Lectures on Chern-Weil theory and Witten deformations /
Saved in:
Author / Creator: | Zhang, Weiping, 1964- |
---|---|
Imprint: | River Edge, N.J. : World Scientific, ©2001. |
Description: | 1 online resource (xi, 117 pages). |
Language: | English |
Series: | Nankai tracts in mathematics ; 4 Nankai tracts in mathematics ; v. 4. |
Subject: | |
Format: | E-Resource Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/11218184 |
MARC
LEADER | 00000cam a2200000Ma 4500 | ||
---|---|---|---|
001 | 11218184 | ||
005 | 20210426224106.8 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 010823s2001 nju ob 001 0 eng d | ||
019 | |a 52854666 |a 505147571 |a 764499667 |a 880303047 |a 961533369 |a 962630609 | ||
020 | |a 9812386580 |q (electronic bk.) | ||
020 | |a 9789812386588 |q (electronic bk.) | ||
020 | |z 9789810246853 | ||
020 | |z 9810246854 | ||
020 | |z 9810246862 |q (pbk.) | ||
035 | |a (OCoLC)646768373 |z (OCoLC)52854666 |z (OCoLC)505147571 |z (OCoLC)764499667 |z (OCoLC)880303047 |z (OCoLC)961533369 |z (OCoLC)962630609 | ||
035 | 9 | |a (OCLCCM-CC)646768373 | |
040 | |a E7B |b eng |e pn |c E7B |d OCLCQ |d HVC |d N$T |d YDXCP |d OCLCQ |d ZCU |d OCLCO |d IDEBK |d OCLCF |d OCLCQ |d SLY |d OCLCQ |d STF |d OCLCQ |d LOA |d AZK |d AGLDB |d COCUF |d MOR |d CCO |d PIFAG |d VGM |d OCLCQ |d WRM |d VTS |d NRAMU |d VT2 |d OCLCQ |d WYU |d LEAUB |d UKAHL | ||
049 | |a MAIN | ||
050 | 4 | |a QA613.618 |b .Z43 2001eb | |
072 | 7 | |a MAT |x 038000 |2 bisacsh | |
084 | |a O177. 3 |2 clc | ||
100 | 1 | |a Zhang, Weiping, |d 1964- |0 http://id.loc.gov/authorities/names/n2007071188 | |
245 | 1 | 0 | |a Lectures on Chern-Weil theory and Witten deformations / |c Weiping Zhang. |
260 | |a River Edge, N.J. : |b World Scientific, |c ©2001. | ||
300 | |a 1 online resource (xi, 117 pages). | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Nankai tracts in mathematics ; |v 4 | |
504 | |a Includes bibliographical references and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Ch. 1. Chern-Weil theory for characteristic classes. 1.1. Review of the de Rham cohomology theory. 1.2. Connections on vector bundles. 1.3. The curvature of a connection. 1.4. Chern-Weil theorem. 1.5. Characteristic forms, classes and numbers. 1.6. Some examples. 1.7. Bott vanishing theorem for foliations. 1.8. Chern-Weil theory in odd dimension. 1.9. References -- ch. 2. Bott and Duistermaat-Heckman formulas. 2.1. Berline-Vergne localization formula. 2.2. Bott residue formula. 2.3. Duistermaat-Heckman formula. 2.4. Bott's original idea. 2.5. References -- ch. 3. Gauss-Bonnet-Chern theorem. 3.1. A toy model and the Berezin integral. 3.2. Mathai-Quillen's Thom form. 3.3. A transgression formula. 3.4. Proof of the Gauss-Bonnet-Chern theorem. 3.5. Some remarks. 3.6. Chern's original proof. 3.7. References -- ch. 4. Poincaré-Hopf index formula: an analytic proof. 4.1. Review of Hodge theorem. 4.2. Poincaré-Hopf index formula. 4.3. Clifford actions and the Witten deformation. 4.4. An estimate outside of [symbol]. 4.5. Harmonic oscillators on Euclidean spaces. 4.6. A proof of the Poincaré-Hopf index formula. 4.7. Some estimates for [symbol]. 4.8. An alternate analytic proof. 4.9. References -- ch. 5. Morse inequalities: an analytic proof. 5.1. Review of Morse inequalities. 5.2. Witten deformation. 5.3. Hodge theorem for ([symbol]). 5.4. Behaviour of [symbol] near the critical points of f. 5.5. Proof of Morse inequalities. 5.6. Proof of proposition 5.5. 5.7. Some remarks and comments. 5.8. References -- ch. 6. Thom-Smale and Witten complexes. 6.1. The Thorn-Smale complex. 6.2. The de Rham map for Thom-Smale complexes. 6.3. Witten's instanton complex and the map [symbol]. 6.4. The map [symbol]. 6.5. An analytic proof of theorem 6.4. 6.6. References -- ch. 7. Atiyah theorem on Kervaire semi-characteristic. 7.1. Kervaire semi-characteristic. 7.2. Atiyah's original proof. 7.3. A proof via Witten deformation. 7.4. A generic counting formula for k(M). 7.5. Non-multiplicativity of k(M). 7.6. References. | |
520 | |a This invaluable book is based on the notes of a graduate course on differential geometry which the author gave at the Nankai Institute of Mathematics. It consists of two parts: the first part contains an introduction to the geometric theory of characteristic classes due to Shiing-shen Chern and André Weil, as well as a proof of the Gauss-Bonnet-Chern theorem based on the Mathai-Quillen construction of Thom forms; the second part presents analytic proofs of the Poincaré-Hopf index formula, as well as the Morse inequalities based on deformations introduced by Edward Witten. | ||
650 | 0 | |a Chern classes. |0 http://id.loc.gov/authorities/subjects/sh97008471 | |
650 | 0 | |a Index theorems. |0 http://id.loc.gov/authorities/subjects/sh85064860 | |
650 | 0 | |a Complexes. |0 http://id.loc.gov/authorities/subjects/sh85029372 | |
650 | 7 | |a MATHEMATICS |x Topology. |2 bisacsh | |
650 | 0 | 7 | |a Index theorems. |2 cct |
650 | 0 | 7 | |a Complexes. |2 cct |
650 | 0 | 7 | |a Chern classes. |2 cct |
650 | 7 | |a Chern classes. |2 fast |0 (OCoLC)fst00853646 | |
650 | 7 | |a Complexes. |2 fast |0 (OCoLC)fst00871597 | |
650 | 7 | |a Index theorems. |2 fast |0 (OCoLC)fst00968961 | |
655 | 4 | |a Electronic books. | |
655 | 0 | |a Electronic books. | |
776 | 0 | 8 | |i Print version: |a Zhang, Weiping. |t Lectures on Chern-Weil theory and Witten deformations. |d River Edge, N.J. : World Scientific, ©2001 |w (DLC) 2001046629 |
830 | 0 | |a Nankai tracts in mathematics ; |v v. 4. |0 http://id.loc.gov/authorities/names/n2001000055 | |
903 | |a HeVa | ||
929 | |a oclccm | ||
999 | f | f | |i 94e328c7-1fae-5efe-8107-3ff7cd284d69 |s 5b18dd31-2a6e-5f72-a218-ec29af977667 |
928 | |t Library of Congress classification |a QA613.618 .Z43 2001eb |l Online |c UC-FullText |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=e000xna&AN=91479 |z eBooks on EBSCOhost |g ebooks |i 12286193 |