Lectures on Chern-Weil theory and Witten deformations /

Saved in:
Bibliographic Details
Author / Creator:Zhang, Weiping, 1964-
Imprint:River Edge, N.J. : World Scientific, ©2001.
Description:1 online resource (xi, 117 pages).
Language:English
Series:Nankai tracts in mathematics ; 4
Nankai tracts in mathematics ; v. 4.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11218184
Hidden Bibliographic Details
ISBN:9812386580
9789812386588
9789810246853
9810246854
9810246862
Notes:Includes bibliographical references and index.
Print version record.
Summary:This invaluable book is based on the notes of a graduate course on differential geometry which the author gave at the Nankai Institute of Mathematics. It consists of two parts: the first part contains an introduction to the geometric theory of characteristic classes due to Shiing-shen Chern and André Weil, as well as a proof of the Gauss-Bonnet-Chern theorem based on the Mathai-Quillen construction of Thom forms; the second part presents analytic proofs of the Poincaré-Hopf index formula, as well as the Morse inequalities based on deformations introduced by Edward Witten.
Other form:Print version: Zhang, Weiping. Lectures on Chern-Weil theory and Witten deformations. River Edge, N.J. : World Scientific, ©2001

MARC

LEADER 00000cam a2200000Ma 4500
001 11218184
005 20210426224106.8
006 m o d
007 cr cn|||||||||
008 010823s2001 nju ob 001 0 eng d
019 |a 52854666  |a 505147571  |a 764499667  |a 880303047  |a 961533369  |a 962630609 
020 |a 9812386580  |q (electronic bk.) 
020 |a 9789812386588  |q (electronic bk.) 
020 |z 9789810246853 
020 |z 9810246854 
020 |z 9810246862  |q (pbk.) 
035 |a (OCoLC)646768373  |z (OCoLC)52854666  |z (OCoLC)505147571  |z (OCoLC)764499667  |z (OCoLC)880303047  |z (OCoLC)961533369  |z (OCoLC)962630609 
035 9 |a (OCLCCM-CC)646768373 
040 |a E7B  |b eng  |e pn  |c E7B  |d OCLCQ  |d HVC  |d N$T  |d YDXCP  |d OCLCQ  |d ZCU  |d OCLCO  |d IDEBK  |d OCLCF  |d OCLCQ  |d SLY  |d OCLCQ  |d STF  |d OCLCQ  |d LOA  |d AZK  |d AGLDB  |d COCUF  |d MOR  |d CCO  |d PIFAG  |d VGM  |d OCLCQ  |d WRM  |d VTS  |d NRAMU  |d VT2  |d OCLCQ  |d WYU  |d LEAUB  |d UKAHL 
049 |a MAIN 
050 4 |a QA613.618  |b .Z43 2001eb 
072 7 |a MAT  |x 038000  |2 bisacsh 
084 |a O177. 3  |2 clc 
100 1 |a Zhang, Weiping,  |d 1964-  |0 http://id.loc.gov/authorities/names/n2007071188 
245 1 0 |a Lectures on Chern-Weil theory and Witten deformations /  |c Weiping Zhang. 
260 |a River Edge, N.J. :  |b World Scientific,  |c ©2001. 
300 |a 1 online resource (xi, 117 pages). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Nankai tracts in mathematics ;  |v 4 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
505 0 |a Ch. 1. Chern-Weil theory for characteristic classes. 1.1. Review of the de Rham cohomology theory. 1.2. Connections on vector bundles. 1.3. The curvature of a connection. 1.4. Chern-Weil theorem. 1.5. Characteristic forms, classes and numbers. 1.6. Some examples. 1.7. Bott vanishing theorem for foliations. 1.8. Chern-Weil theory in odd dimension. 1.9. References -- ch. 2. Bott and Duistermaat-Heckman formulas. 2.1. Berline-Vergne localization formula. 2.2. Bott residue formula. 2.3. Duistermaat-Heckman formula. 2.4. Bott's original idea. 2.5. References -- ch. 3. Gauss-Bonnet-Chern theorem. 3.1. A toy model and the Berezin integral. 3.2. Mathai-Quillen's Thom form. 3.3. A transgression formula. 3.4. Proof of the Gauss-Bonnet-Chern theorem. 3.5. Some remarks. 3.6. Chern's original proof. 3.7. References -- ch. 4. Poincaré-Hopf index formula: an analytic proof. 4.1. Review of Hodge theorem. 4.2. Poincaré-Hopf index formula. 4.3. Clifford actions and the Witten deformation. 4.4. An estimate outside of [symbol]. 4.5. Harmonic oscillators on Euclidean spaces. 4.6. A proof of the Poincaré-Hopf index formula. 4.7. Some estimates for [symbol]. 4.8. An alternate analytic proof. 4.9. References -- ch. 5. Morse inequalities: an analytic proof. 5.1. Review of Morse inequalities. 5.2. Witten deformation. 5.3. Hodge theorem for ([symbol]). 5.4. Behaviour of [symbol] near the critical points of f. 5.5. Proof of Morse inequalities. 5.6. Proof of proposition 5.5. 5.7. Some remarks and comments. 5.8. References -- ch. 6. Thom-Smale and Witten complexes. 6.1. The Thorn-Smale complex. 6.2. The de Rham map for Thom-Smale complexes. 6.3. Witten's instanton complex and the map [symbol]. 6.4. The map [symbol]. 6.5. An analytic proof of theorem 6.4. 6.6. References -- ch. 7. Atiyah theorem on Kervaire semi-characteristic. 7.1. Kervaire semi-characteristic. 7.2. Atiyah's original proof. 7.3. A proof via Witten deformation. 7.4. A generic counting formula for k(M). 7.5. Non-multiplicativity of k(M). 7.6. References. 
520 |a This invaluable book is based on the notes of a graduate course on differential geometry which the author gave at the Nankai Institute of Mathematics. It consists of two parts: the first part contains an introduction to the geometric theory of characteristic classes due to Shiing-shen Chern and André Weil, as well as a proof of the Gauss-Bonnet-Chern theorem based on the Mathai-Quillen construction of Thom forms; the second part presents analytic proofs of the Poincaré-Hopf index formula, as well as the Morse inequalities based on deformations introduced by Edward Witten. 
650 0 |a Chern classes.  |0 http://id.loc.gov/authorities/subjects/sh97008471 
650 0 |a Index theorems.  |0 http://id.loc.gov/authorities/subjects/sh85064860 
650 0 |a Complexes.  |0 http://id.loc.gov/authorities/subjects/sh85029372 
650 7 |a MATHEMATICS  |x Topology.  |2 bisacsh 
650 0 7 |a Index theorems.  |2 cct 
650 0 7 |a Complexes.  |2 cct 
650 0 7 |a Chern classes.  |2 cct 
650 7 |a Chern classes.  |2 fast  |0 (OCoLC)fst00853646 
650 7 |a Complexes.  |2 fast  |0 (OCoLC)fst00871597 
650 7 |a Index theorems.  |2 fast  |0 (OCoLC)fst00968961 
655 4 |a Electronic books. 
655 0 |a Electronic books. 
776 0 8 |i Print version:  |a Zhang, Weiping.  |t Lectures on Chern-Weil theory and Witten deformations.  |d River Edge, N.J. : World Scientific, ©2001  |w (DLC) 2001046629 
830 0 |a Nankai tracts in mathematics ;  |v v. 4.  |0 http://id.loc.gov/authorities/names/n2001000055 
903 |a HeVa 
929 |a oclccm 
999 f f |i 94e328c7-1fae-5efe-8107-3ff7cd284d69  |s 5b18dd31-2a6e-5f72-a218-ec29af977667 
928 |t Library of Congress classification  |a QA613.618 .Z43 2001eb  |l Online  |c UC-FullText  |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=e000xna&AN=91479  |z eBooks on EBSCOhost  |g ebooks  |i 12286193