Strong light-matter coupling : from atoms to solid-state systems /

Saved in:
Bibliographic Details
Imprint:New Jersey : World Scientific, [2014]
©2014
Description:1 online resource
Language:English
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11219992
Hidden Bibliographic Details
Other authors / contributors:Auffèves, Alexia, editor.
Gerace, Dario, editor.
Richard, Maxime, 1977- editor.
Portolan, Stefano, editor.
Santos, Marcelo de França, editor.
Kwek, Leong Chuan, editor.
Miniatura, C. (Christian), editor.
ISBN:9789814460354
9814460354
9789814460347
9814460346
Notes:Includes bibliographical references and index.
Print version record.
Summary:The physics of strong light-matter coupling has been addressed in different scientific communities over the last three decades. Since the early eighties, atoms coupled to optical and microwave cavities have led to pioneering demonstrations of cavity quantum electrodynamics, Gedanken experiments, and building blocks for quantum information processing, for which the Nobel Prize in Physics was awarded in 2012. In the framework of semiconducting devices, strong coupling has allowed investigations into the physics of Bose gases in solid-state environments, and the latter holds promise for exploiting light-matter interaction at the single-photon level in scalable architectures. More recently, impressive developments in the so-called superconducting circuit QED have opened another fundamental playground to revisit cavity quantum electrodynamics for practical and fundamental purposes. This book aims at developing the necessary interface between these communities, by providing future researchers with a robust conceptual, theoretical and experimental basis on strong light-matter coupling, both in the classical and in the quantum regimes. In addition, the emphasis is on new forefront research topics currently developed around the physics of strong light-matter interaction in the atomic and solid-state scenarios.
Other form:Print version: Strong light-matter coupling 9789814460347