Protein-protein interactions : methods and applications /

Saved in:
Bibliographic Details
Edition:Second edition.
Imprint:New York, NY : Humana Press, 2015.
Description:1 online resource (xv, 620 pages) : illustrations (some color)
Language:English
Series:Methods in Molecular Biology, 1064-3745 ; 1278
Methods in molecular biology (Clifton, N.J.) ; v. 1278.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11242452
Hidden Bibliographic Details
Other authors / contributors:Meyerkord, Cheryl L., editor.
Fu, Haian, editor.
ISBN:9781493924257
1493924257
1493924249
9781493924240
9781493924240
Notes:Includes index.
Includes bibliographical references and index.
Online resource; title from PDF title page (SpringerLink, viewed April 17, 2015).
Summary:In recent years, our understanding of the protein-protein interaction landscape has expanded significantly. Growing interest in analyzing and targeting protein-protein interactions has resulted in an increased need for detailed methodologies to interrogate and monitor protein-protein interactions. To meet this need, Protein-Protein Interactions: Methods and Applications has been updated and expanded. The second edition includes core technological platforms used to study protein-protein interactions, and cutting-edge technologies that reflect recent scientific advances and the emerging focus on therapeutic discovery. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of necessary materials and reagents, step-by-step laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. These well-detailed protocols describe methods for identifying protein-protein interaction partners, analyzing protein-protein interactions quantitatively and qualitatively, monitoring protein-protein interactions in live cells, and predicting and determining interaction interfaces. Authoritative and cutting-edge, Protein-Protein Interactions: Methods and Applications, Second Edition is a valuable resource that will enable readers to elucidate the mechanisms of protein-protein interactions, determine the role of these interactions in diverse biological processes, and target protein-protein interactions for therapeutic discovery.
Other form:Print version: Protein-protein interactions. Second edition. New York, NY : Humana Press, 2015
Standard no.:10.1007/978-1-4939-2425-7
Table of Contents:
  • Structural basis of protein-protein interactions
  • Quantitative analysis of protein-protein interactions
  • Protein-protein interaction databases
  • Computational prediction of protein-protein interactions.
  • Structure-based computational approaches for small-molecule modulation of protein-protein interactions
  • Targeting protein-protein interactions for drug discovery
  • Studying protein-protein interactions using surface plasmon resonance
  • Resonant waveguide grating for monitoring bimolecular interactions
  • Quartz microbalance technology for probing biomolecular interactions
  • Label-free kinetic analysis of an antibody-antigen interaction using biolayer interferometry
  • Characterization of protein-protein interactions by isothermal titration calorimetry
  • Sedimentation equilibrium studies
  • Detecting protein-protein interactions by gel filtration chromatography
  • Using light scattering to determine the stoichiometry of protein complexes
  • Circular dichroism (CD) analyses of protein-protein interactions
  • Protein-protein interaction analysis by nuclear magnetic resonance spectroscopy
  • Quantitative protein analysis by mass spectrometry
  • Using peptide arrays created by the SPOT method for defining protein-protein interactions
  • Fluorescence polarization assay to quantify protein-protein interactions
  • FoĢˆrster resonance energy transfer (FRET) microscopy for monitoring biomolecular interactions
  • Utilizing ELISA to monitor protein-protein interactions
  • Glutathione-S-transferase (GST)-fusion based assays for studying protein-protein interactions
  • Hexahistidine (6xHis) fusion-based assays for protein-protein interactions
  • Studying protein-protein interactions via blot overlay/Far Western blot
  • Co-immunoprecipitation from transfected cells
  • In vivo protein cross-linking
  • Identification of protein-protein interactions by standard Gal4p-based yeast two-hybrid screening
  • Reverse two-hybrid techniques in the yeast Saccharomyces cerevisiae
  • MAPPIT, a mammalian two-hybrid method for in-cell detection of protein-protein interactions
  • Bioluminescence resonance energy transfer to detect protein-protein interactions in live cells
  • Mapping biochemical networks with protein fragment complementation assays
  • Detection of protein-protein interaction using bimolecular fluorescence complementation assay
  • Split-luciferase complementation assay to detect channel-protein interactions in live cells
  • Confocal microscopy for intracellular co-localization of proteins
  • Fluorescence polarization assay to quantify protein-protein interactions in an HTS format
  • Estrogen receptor alpha/co-activator interaction assay
  • TR-FRET
  • High content screening biosensor assay to identify disruptors of p53-hDM2 protein-protein interactions
  • Discovery of inhibitors of the MDM2-p53 protein-protein interaction
  • Biophysical methods for identifying fragment-based inhibitors of protein-protein interactions.