Supersymmetry and noncommutative geometry /

Saved in:
Bibliographic Details
Author / Creator:Beenakker, Wim, author.
Imprint:Cham : Springer, [2016]
©2016
Description:1 online resource : illustrations
Language:English
Series:Springer briefs in mathematical physics, 2197-1765 ; volume 9
SpringerBriefs in mathematical physics ; v. 9.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11249252
Hidden Bibliographic Details
Other authors / contributors:Broek, Thijs van den, author.
Suijlekom, Walter D. van., 1978- author.
ISBN:9783319247984
3319247980
9783319247960
3319247964
Digital file characteristics:text file PDF
Notes:Includes bibliographical references.
Online resource; title from PDF title page (EBSCO, viewed October 28, 2015).
Summary:In this work the question whether noncommutative geometry allows for supersymmetric theories is addressed. Noncommutative geometry has seen remarkable applications in high energy physics, viz. the geometrical interpretation of the Standard Model, however such a question has not been answered in a conclusive way so far. The book starts with a systematic analysis of the possibilities for so-called almost-commutative geometries on a 4-dimensional, flat background to exhibit not only a particle content that is eligible for supersymmetry, but also have a supersymmetric action. An approach is proposed in which the basic 'building blocks' of potentially supersymmetric theories and the demands for their action to be supersymmetric are identified. It is then described how a novel kind of soft supersymmetry breaking Lagrangian arises naturally from the spectral action. Finally, the above formalism is applied to explore the existence of a noncommutative version of the minimal supersymmetric Standard Model. This book is intended for mathematical/theoretical physicists with an interest in the applications of noncommutative geometry to supersymmetric field theories.
Other form:Print version: Beenakker, Wim. Supersymmetry and noncommutative geometry. Cham : Springer, [2016] 3319247964 9783319247960
Standard no.:10.1007/978-3-319-24798-4

MARC

LEADER 00000cam a2200000Ii 4500
001 11249252
005 20210625184912.9
006 m o d
007 cr cnu|||unuuu
008 151026t20162016sz a ob 000 0 eng d
016 7 |a 019184486  |2 Uk 
019 |a 927376789  |a 936281169  |a 985034257  |a 1005802019  |a 1012065544  |a 1026432469  |a 1048144240  |a 1066464602  |a 1086462259  |a 1111000399  |a 1112538832 
020 |a 9783319247984  |q (electronic bk.) 
020 |a 3319247980  |q (electronic bk.) 
020 |z 9783319247960 
020 |z 3319247964 
024 7 |a 10.1007/978-3-319-24798-4  |2 doi 
035 |a (OCoLC)926705653  |z (OCoLC)927376789  |z (OCoLC)936281169  |z (OCoLC)985034257  |z (OCoLC)1005802019  |z (OCoLC)1012065544  |z (OCoLC)1026432469  |z (OCoLC)1048144240  |z (OCoLC)1066464602  |z (OCoLC)1086462259  |z (OCoLC)1111000399  |z (OCoLC)1112538832 
035 9 |a (OCLCCM-CC)926705653 
037 |a com.springer.onix.9783319247984  |b Springer Nature 
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d IDEBK  |d YDXCP  |d CDX  |d NUI  |d OCLCF  |d COO  |d GW5XE  |d EBLCP  |d KSU  |d IDB  |d IAD  |d JBG  |d ICW  |d VT2  |d ILO  |d ICN  |d OCLCQ  |d ESU  |d IOG  |d U3W  |d MERUC  |d REB  |d EZ9  |d INT  |d OCLCQ  |d WYU  |d UKMGB  |d OCLCQ  |d LEAUB  |d AU@  |d AUD  |d OCLCQ  |d DCT  |d ERF  |d OCLCQ  |d AJS 
049 |a MAIN 
050 4 |a QC174.17.S9 
072 7 |a SCI  |x 057000  |2 bisacsh 
072 7 |a PHU  |2 bicssc 
100 1 |a Beenakker, Wim,  |e author. 
245 1 0 |a Supersymmetry and noncommutative geometry /  |c Wim Beenakker, Thijs van den Broek, Walter D. van Suijlekom. 
264 1 |a Cham :  |b Springer,  |c [2016] 
264 4 |c ©2016 
300 |a 1 online resource :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer briefs in mathematical physics,  |x 2197-1765 ;  |v volume 9 
504 |a Includes bibliographical references. 
588 0 |a Online resource; title from PDF title page (EBSCO, viewed October 28, 2015). 
505 0 |a Introduction -- Supersymmetry -- Noncommutative geometry -- Supersymmetric almost-commutative geometries -- Noncommutative geometry and R-parity -- Supersymmetric spectral triples -- Conditions for a supersymmetric spectral action -- Summary and conclusions -- Appendix 1. The action from a building block of the third type -- Appendix 2. Supersymmetric spectral actions: Proofs -- Appendix 3. Auxiliary lemmas and identities -- Supersymmetry breaking -- Soft supersymmetry breaking -- Soft supersymmetry breaking terms from the spectral action -- Summary and conclusions -- The noncommutative supersymmetric Standard Model -- Obstructions for a supersymmetric theory -- The building blocks of the MSSM -- Identification of particles and sparticles. 
520 |a In this work the question whether noncommutative geometry allows for supersymmetric theories is addressed. Noncommutative geometry has seen remarkable applications in high energy physics, viz. the geometrical interpretation of the Standard Model, however such a question has not been answered in a conclusive way so far. The book starts with a systematic analysis of the possibilities for so-called almost-commutative geometries on a 4-dimensional, flat background to exhibit not only a particle content that is eligible for supersymmetry, but also have a supersymmetric action. An approach is proposed in which the basic 'building blocks' of potentially supersymmetric theories and the demands for their action to be supersymmetric are identified. It is then described how a novel kind of soft supersymmetry breaking Lagrangian arises naturally from the spectral action. Finally, the above formalism is applied to explore the existence of a noncommutative version of the minimal supersymmetric Standard Model. This book is intended for mathematical/theoretical physicists with an interest in the applications of noncommutative geometry to supersymmetric field theories. 
650 0 |a Supersymmetry.  |0 http://id.loc.gov/authorities/subjects/sh85130665 
650 0 |a Noncommutative differential geometry.  |0 http://id.loc.gov/authorities/subjects/sh97004788 
650 7 |a Mathematical physics.  |2 bicssc 
650 7 |a Quantum physics (quantum mechanics & quantum field theory)  |2 bicssc 
650 7 |a SCIENCE  |x Physics  |x Quantum Theory.  |2 bisacsh 
650 7 |a Noncommutative differential geometry.  |2 fast  |0 (OCoLC)fst01038608 
650 7 |a Supersymmetry.  |2 fast  |0 (OCoLC)fst01139038 
655 0 |a Electronic books. 
655 4 |a Electronic books. 
700 1 |a Broek, Thijs van den,  |e author. 
700 1 |a Suijlekom, Walter D. van.,  |d 1978-  |e author.  |0 http://id.loc.gov/authorities/names/n2010080638 
776 0 8 |i Print version:  |a Beenakker, Wim.  |t Supersymmetry and noncommutative geometry.  |d Cham : Springer, [2016]  |z 3319247964  |z 9783319247960  |w (OCoLC)918931596 
830 0 |a SpringerBriefs in mathematical physics ;  |v v. 9.  |x 2197-1765  |0 http://id.loc.gov/authorities/names/no2014125102 
903 |a HeVa 
929 |a oclccm 
999 f f |i 1dce645b-bb8d-533c-a886-4a0bf175c966  |s 8d505edf-2fbc-5a20-9bf3-8542e50a7724 
928 |t Library of Congress classification  |a QC174.17.S9  |l Online  |c UC-FullText  |u https://link.springer.com/10.1007/978-3-319-24798-4  |z Springer Nature  |g ebooks  |i 12532963