Traffic anomaly detection /

Saved in:
Bibliographic Details
Author / Creator:Cua-Sánchez, Antonio, author.
Imprint:London, UK : ISTE, Ltd. ; Kidlington, Oxford, UK : Elsevier, 2015.
Description:1 online resource : illustrations
Language:English
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11249384
Hidden Bibliographic Details
Other authors / contributors:Aracil, Javier, author.
ISBN:9780081008072
0081008074
9781785480126
Notes:Includes bibliographical references and index.
Online resource; title from PDF title page (EBSCO, viewed November 5, 2015).
Summary:This book presents an overview of traffic anomaly detection analysis, allowing you to monitor security aspects of multimedia services. The author's approach is based on the analysis of time aggregation adjacent periods of the traffic. As traffic varies throughout the day, it is essential to consider the concrete traffic period in which the anomaly occurs. This book presents the algorithms proposed specifically for this analysis and an empirical comparative analysis of those methods and settle a new information theory based technique, named "typical day analysis."
Other form:Print version: Cuadra-Sánchez, Antonio. Traffic Anomaly Detection. Kent : Elsevier Science, ©2015 9781785480126

MARC

LEADER 00000cam a2200000Ii 4500
001 11249384
005 20180526095622.9
006 m o d
007 cr cnu|||unuuu
008 151104s2015 enka ob 001 0 eng d
019 |a 929533336 
020 |a 9780081008072  |q (electronic bk.) 
020 |a 0081008074  |q (electronic bk.) 
020 |z 9781785480126 
035 |a (OCoLC)927438026  |z (OCoLC)929533336 
035 9 |a (OCLCCM-CC)927438026 
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d IDEBK  |d OCLCO  |d BTCTA  |d YDXCP  |d CDX  |d EBLCP  |d OCLCO  |d OCLCF  |d OCLCO  |d OPELS  |d OCLCO  |d UIU  |d MERUC  |d IDB  |d VGM  |d OCLCQ  |d U3W 
049 |a MAIN 
050 4 |a TK5102.5 
072 7 |a TEC  |x 009070  |2 bisacsh 
100 1 |a Cua-Sánchez, Antonio,  |e author.  |0 http://id.loc.gov/authorities/names/no2016062045 
245 1 0 |a Traffic anomaly detection /  |c Antonio Cua-Sánchez, Javier Aracil. 
264 1 |a London, UK :  |b ISTE, Ltd. ;  |a Kidlington, Oxford, UK :  |b Elsevier,  |c 2015. 
300 |a 1 online resource :  |b illustrations 
336 |a text  |b txt  |2 rdacontent  |0 http://id.loc.gov/vocabulary/contentTypes/txt 
337 |a computer  |b c  |2 rdamedia  |0 http://id.loc.gov/vocabulary/mediaTypes/c 
338 |a online resource  |b cr  |2 rdacarrier  |0 http://id.loc.gov/vocabulary/carriers/cr 
504 |a Includes bibliographical references and index. 
588 0 |a Online resource; title from PDF title page (EBSCO, viewed November 5, 2015). 
520 |a This book presents an overview of traffic anomaly detection analysis, allowing you to monitor security aspects of multimedia services. The author's approach is based on the analysis of time aggregation adjacent periods of the traffic. As traffic varies throughout the day, it is essential to consider the concrete traffic period in which the anomaly occurs. This book presents the algorithms proposed specifically for this analysis and an empirical comparative analysis of those methods and settle a new information theory based technique, named "typical day analysis." 
650 0 |a Signal detection  |x Statistical methods. 
650 0 |a Signal detection  |x Mathematical models. 
650 0 |a Signal processing  |x Statistical methods.  |0 http://id.loc.gov/authorities/subjects/sh2010113089 
650 0 |a Signal processing  |x Mathematical models. 
650 0 |a Computer networks.  |0 http://id.loc.gov/authorities/subjects/sh85029513 
650 7 |a TECHNOLOGY & ENGINEERING  |x Mechanical.  |2 bisacsh 
650 7 |a Computer networks.  |2 fast  |0 http://id.worldcat.org/fast/fst00872297 
650 7 |a Signal detection  |x Mathematical models.  |2 fast  |0 http://id.worldcat.org/fast/fst01118269 
650 7 |a Signal detection  |x Statistical methods.  |2 fast  |0 http://id.worldcat.org/fast/fst01118270 
650 7 |a Signal processing  |x Mathematical models.  |2 fast  |0 http://id.worldcat.org/fast/fst01118301 
650 7 |a Signal processing  |x Statistical methods.  |2 fast  |0 http://id.worldcat.org/fast/fst01118304 
655 4 |a Electronic books. 
700 1 |a Aracil, Javier,  |e author.  |0 http://id.loc.gov/authorities/names/n86120893 
776 0 8 |i Print version:  |a Cuadra-Sánchez, Antonio.  |t Traffic Anomaly Detection.  |d Kent : Elsevier Science, ©2015  |z 9781785480126 
903 |a HeVa 
929 |a oclccm 
999 f f |i 61393ebb-be3d-5339-b04d-9ba7141b9245  |s 225a363d-cbc2-5aea-aa5e-2bd65b449774 
928 |t Library of Congress classification  |a TK5102.5  |l Online  |c UC-FullText  |u https://www.sciencedirect.com/science/book/9781785480126  |z Elsevier  |g ebooks  |i 10978526