|
|
|
|
LEADER |
00000cam a2200000Ii 4500 |
001 |
11249384 |
005 |
20180526095622.9 |
006 |
m o d |
007 |
cr cnu|||unuuu |
008 |
151104s2015 enka ob 001 0 eng d |
019 |
|
|
|a 929533336
|
020 |
|
|
|a 9780081008072
|q (electronic bk.)
|
020 |
|
|
|a 0081008074
|q (electronic bk.)
|
020 |
|
|
|z 9781785480126
|
035 |
|
|
|a (OCoLC)927438026
|z (OCoLC)929533336
|
035 |
|
9 |
|a (OCLCCM-CC)927438026
|
040 |
|
|
|a N$T
|b eng
|e rda
|e pn
|c N$T
|d N$T
|d IDEBK
|d OCLCO
|d BTCTA
|d YDXCP
|d CDX
|d EBLCP
|d OCLCO
|d OCLCF
|d OCLCO
|d OPELS
|d OCLCO
|d UIU
|d MERUC
|d IDB
|d VGM
|d OCLCQ
|d U3W
|
049 |
|
|
|a MAIN
|
050 |
|
4 |
|a TK5102.5
|
072 |
|
7 |
|a TEC
|x 009070
|2 bisacsh
|
100 |
1 |
|
|a Cua-Sánchez, Antonio,
|e author.
|0 http://id.loc.gov/authorities/names/no2016062045
|
245 |
1 |
0 |
|a Traffic anomaly detection /
|c Antonio Cua-Sánchez, Javier Aracil.
|
264 |
|
1 |
|a London, UK :
|b ISTE, Ltd. ;
|a Kidlington, Oxford, UK :
|b Elsevier,
|c 2015.
|
300 |
|
|
|a 1 online resource :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|0 http://id.loc.gov/vocabulary/contentTypes/txt
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|0 http://id.loc.gov/vocabulary/mediaTypes/c
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|0 http://id.loc.gov/vocabulary/carriers/cr
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
0 |
|
|a Online resource; title from PDF title page (EBSCO, viewed November 5, 2015).
|
520 |
|
|
|a This book presents an overview of traffic anomaly detection analysis, allowing you to monitor security aspects of multimedia services. The author's approach is based on the analysis of time aggregation adjacent periods of the traffic. As traffic varies throughout the day, it is essential to consider the concrete traffic period in which the anomaly occurs. This book presents the algorithms proposed specifically for this analysis and an empirical comparative analysis of those methods and settle a new information theory based technique, named "typical day analysis."
|
650 |
|
0 |
|a Signal detection
|x Statistical methods.
|
650 |
|
0 |
|a Signal detection
|x Mathematical models.
|
650 |
|
0 |
|a Signal processing
|x Statistical methods.
|0 http://id.loc.gov/authorities/subjects/sh2010113089
|
650 |
|
0 |
|a Signal processing
|x Mathematical models.
|
650 |
|
0 |
|a Computer networks.
|0 http://id.loc.gov/authorities/subjects/sh85029513
|
650 |
|
7 |
|a TECHNOLOGY & ENGINEERING
|x Mechanical.
|2 bisacsh
|
650 |
|
7 |
|a Computer networks.
|2 fast
|0 http://id.worldcat.org/fast/fst00872297
|
650 |
|
7 |
|a Signal detection
|x Mathematical models.
|2 fast
|0 http://id.worldcat.org/fast/fst01118269
|
650 |
|
7 |
|a Signal detection
|x Statistical methods.
|2 fast
|0 http://id.worldcat.org/fast/fst01118270
|
650 |
|
7 |
|a Signal processing
|x Mathematical models.
|2 fast
|0 http://id.worldcat.org/fast/fst01118301
|
650 |
|
7 |
|a Signal processing
|x Statistical methods.
|2 fast
|0 http://id.worldcat.org/fast/fst01118304
|
655 |
|
4 |
|a Electronic books.
|
700 |
1 |
|
|a Aracil, Javier,
|e author.
|0 http://id.loc.gov/authorities/names/n86120893
|
776 |
0 |
8 |
|i Print version:
|a Cuadra-Sánchez, Antonio.
|t Traffic Anomaly Detection.
|d Kent : Elsevier Science, ©2015
|z 9781785480126
|
903 |
|
|
|a HeVa
|
929 |
|
|
|a oclccm
|
999 |
f |
f |
|i 61393ebb-be3d-5339-b04d-9ba7141b9245
|s 225a363d-cbc2-5aea-aa5e-2bd65b449774
|
928 |
|
|
|t Library of Congress classification
|a TK5102.5
|l Online
|c UC-FullText
|u https://www.sciencedirect.com/science/book/9781785480126
|z Elsevier
|g ebooks
|i 10978526
|