Boundary value problems for systems of differential, difference and fractional equations : positive solutions /

Saved in:
Bibliographic Details
Author / Creator:Henderson, Johnny, author.
Imprint:Amsterdam : Elsevier, [2016]
©2016
Description:1 online resource.
Language:English
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11249484
Hidden Bibliographic Details
Other authors / contributors:Luca, Rodica, author.
ISBN:9780128036792
0128036796
0128036524
9780128036525
Notes:Includes bibliographical references and index.
Online resource; title from PDF title page (EBSCO, viewed November 4, 2015)
Summary:Boundary Value Problems for Systems of Differential, Difference and Fractional Equations: Positive Solutions discusses the concept of a differential equation that brings together a set of additional constraints called the boundary conditions. As boundary value problems arise in several branches of math given the fact that any physical differential equation will have them, this book will provide a timely presentation on the topic. Problems involving the wave equation, such as the determination of normal modes, are often stated as boundary value problems. To be useful in applications, a boundary value problem should be well posed. This means that given the input to the problem there exists a unique solution, which depends continuously on the input. Much theoretical work in the field of partial differential equations is devoted to proving that boundary value problems arising from scientific and engineering applications are in fact well-posed.
Other form:Erscheint auch als: Druck-Ausgabe Henderson, Johnny. Boundary Value Problems for Systems of Differential, Difference and Fractional Equations . Positive Solutions

MARC

LEADER 00000cam a2200000Ii 4500
001 11249484
006 m o d
007 cr cnu---unuuu
008 151102s2016 ne ob 001 0 eng d
005 20240624211042.6
019 |a 927972737 
020 |a 9780128036792  |q electronic bk. 
020 |a 0128036796  |q electronic bk. 
020 |z 0128036524 
020 |z 9780128036525 
035 |a (OCoLC)927296643  |z (OCoLC)927972737 
035 9 |a (OCLCCM-CC)927296643 
037 |a 846197  |b MIL 
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d YDXCP  |d CDX  |d IDEBK  |d EBLCP  |d COO  |d OCLCF  |d OPELS  |d UIU  |d DEBBG  |d IDB  |d OCLCQ  |d U3W  |d MERUC 
049 |a MAIN 
050 4 |a QA379 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
100 1 |a Henderson, Johnny,  |e author.  |0 http://id.loc.gov/authorities/names/n96009712 
245 1 0 |a Boundary value problems for systems of differential, difference and fractional equations :  |b positive solutions /  |c Johnny Henderson and Rodica Luca. 
264 1 |a Amsterdam :  |b Elsevier,  |c [2016] 
264 4 |c ©2016 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent  |0 http://id.loc.gov/vocabulary/contentTypes/txt 
337 |a computer  |b c  |2 rdamedia  |0 http://id.loc.gov/vocabulary/mediaTypes/c 
338 |a online resource  |b cr  |2 rdacarrier  |0 http://id.loc.gov/vocabulary/carriers/cr 
588 0 |a Online resource; title from PDF title page (EBSCO, viewed November 4, 2015) 
504 |a Includes bibliographical references and index. 
520 |a Boundary Value Problems for Systems of Differential, Difference and Fractional Equations: Positive Solutions discusses the concept of a differential equation that brings together a set of additional constraints called the boundary conditions. As boundary value problems arise in several branches of math given the fact that any physical differential equation will have them, this book will provide a timely presentation on the topic. Problems involving the wave equation, such as the determination of normal modes, are often stated as boundary value problems. To be useful in applications, a boundary value problem should be well posed. This means that given the input to the problem there exists a unique solution, which depends continuously on the input. Much theoretical work in the field of partial differential equations is devoted to proving that boundary value problems arising from scientific and engineering applications are in fact well-posed. 
650 0 |a Boundary value problems.  |0 http://id.loc.gov/authorities/subjects/sh85016102 
650 0 |a Functional differential equations.  |0 http://id.loc.gov/authorities/subjects/sh85052313 
650 7 |a MATHEMATICS / Calculus  |2 bisacsh 
650 7 |a MATHEMATICS / Mathematical Analysis  |2 bisacsh 
650 7 |a Boundary value problems.  |2 fast  |0 http://id.worldcat.org/fast/fst00837122 
650 7 |a Functional differential equations.  |2 fast  |0 http://id.worldcat.org/fast/fst00936063 
655 4 |a Electronic books. 
700 1 |a Luca, Rodica,  |e author. 
776 0 8 |i Erscheint auch als:  |n Druck-Ausgabe  |a Henderson, Johnny. Boundary Value Problems for Systems of Differential, Difference and Fractional Equations .  |t Positive Solutions 
903 |a HeVa 
929 |a oclccm 
999 f f |i d985ee78-0293-5085-9e0f-03624cb6db99  |s 078e63f7-a12f-52d9-acf3-ce1a1c872e79 
928 |t Library of Congress classification  |a QA379  |l Online  |c UC-FullText  |u https://www.sciencedirect.com/science/book/9780128036525  |z Elsevier  |g ebooks  |i 10978517