Gauge invariance and Weyl-polymer quantization /

Saved in:
Bibliographic Details
Author / Creator:Strocchi, F., author.
Imprint:Cham : Springer, ©2016.
Description:1 online resource (x, 97 pages)
Language:English
Series:Lecture Notes in Physics, 0075-8450 ; volume 904
Lecture notes in physics ; v. 904.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11251076
Hidden Bibliographic Details
ISBN:9783319176956
3319176951
9783319176949
3319176943
Digital file characteristics:PDF
text file
Notes:Includes bibliographical references and index.
English.
Summary:The book gives an introduction to Weyl non-regular quantization suitable for the description of physically interesting quantum systems, where the traditional Dirac-Heisenberg quantization is not applicable. The latter implicitly assumes that the canonical variables describe observables, entailing necessarily the regularity of their exponentials (Weyl operators). However, in physically interesting cases -- typically in the presence of a gauge symmetry -- non-observable canonical variables are introduced for the description of the states, namely of the relevant representations of the observable algebra. In general, a gauge invariant ground state defines a non-regular representation of the gauge dependent Weyl operators, providing a mathematically consistent treatment of familiar quantum systems -- such as the electron in a periodic potential (Bloch electron), the Quantum Hall electron, or the quantum particle on a circle -- where the gauge transformations are, respectively, the lattice translations, the magnetic translations and the rotations of 2?. Relevant examples are also provided by quantum gauge field theory models, in particular by the temporal gauge of Quantum Electrodynamics, avoiding the conflict between the Gauss law constraint and the Dirac-Heisenberg canonical quantization. The same applies to Quantum Chromodynamics, where the non-regular quantization of the temporal gauge provides a simple solution of the U(1) problem and a simple link between the vacuum structure and the topology of the gauge group. Last but not least, Weyl non-regular quantization is briefly discussed from the perspective of the so-called polymer representations proposed for Loop Quantum Gravity in connection with diffeomorphism invariant vacuum states.
The book gives an introduction to Weyl non-regular quantization suitable for the description of physically interesting quantum systems, where the traditional Dirac-Heisenberg quantization is not applicable. The latter implicitly assumes that the canonical variables describe observables, entailing necessarily the regularity of their exponentials (Weyl operators). However, in physically interesting cases -- typically in the presence of a gauge symmetry -- non-observable canonical variables are introduced for the description of the states, namely of the relevant representations of the observable algebra. In general, a gauge invariant ground state defines a non-regular representation of the gauge dependent Weyl operators, providing a mathematically consistent treatment of familiar quantum systems -- such as the electron in a periodic potential (Bloch electron), the Quantum Hall electron, or the quantum particle on a circle -- where the gauge transformations are, respectively, the lattice translations, the magnetic translations and the rotations of 2π. Relevant examples are also provided by quantum gauge field theory models, in particular by the temporal gauge of Quantum Electrodynamics, avoiding the conflict between the Gauss law constraint and the Dirac-Heisenberg canonical quantization. The same applies to Quantum Chromodynamics, where the non-regular quantization of the temporal gauge provides a simple solution of the U(1) problem and a simple link between the vacuum structure and the topology of the gauge group. Last but not least, Weyl non-regular quantization is briefly discussed from the perspective of the so-called polymer representations proposed for Loop Quantum Gravity in connection with diffeomorphism invariant vacuum states.
Other form:Printed edition: 9783319176949
Standard no.:10.1007/978-3-319-17695-6

MARC

LEADER 00000cam a2200000Ii 4500
001 11251076
005 20210625184419.4
006 m o d
007 cr nn|008mamaa
008 151112s2016 sz ob 001 0 eng d
019 |a 932002580  |a 1005823677  |a 1048242274  |a 1058389006  |a 1096640499  |a 1110913104  |a 1112575193  |a 1112952752  |a 1122812909 
020 |a 9783319176956  |q (electronic bk.) 
020 |a 3319176951  |q (electronic bk.) 
020 |z 9783319176949 
020 |z 3319176943 
024 7 |a 10.1007/978-3-319-17695-6  |2 doi 
035 |a (OCoLC)932167325  |z (OCoLC)932002580  |z (OCoLC)1005823677  |z (OCoLC)1048242274  |z (OCoLC)1058389006  |z (OCoLC)1096640499  |z (OCoLC)1110913104  |z (OCoLC)1112575193  |z (OCoLC)1112952752  |z (OCoLC)1122812909 
035 9 |a (OCLCCM-CC)932167325 
037 |b Springer 
040 |a NUI  |b eng  |e pn  |c NUI  |d OCLCO  |d YDXCP  |d AZU  |d GW5XE  |d OCLCF  |d OCLCQ  |d OCLCO  |d UAB  |d IAD  |d JBG  |d ICW  |d ILO  |d ICN  |d ESU  |d COO  |d OCLCQ  |d IOG  |d U3W  |d REB  |d OCLCQ  |d VT2  |d OCLCQ  |d AU@  |d OCLCQ  |d WYU  |d LEAUB  |d OCLCQ  |d DCT  |d ERF  |d UKBTH  |d LEATE  |d BNG  |d SFB  |d OCLCO  |d OCLCQ  |d UKAHL 
049 |a MAIN 
050 4 |a QC174.45 
050 4 |a QC173.96-174.52 
066 |c (S 
072 7 |a PHQ  |2 bicssc 
072 7 |a SCI057000  |2 bisacsh 
100 1 |a Strocchi, F.,  |e author.  |0 http://id.loc.gov/authorities/names/n85306331 
245 1 0 |a Gauge invariance and Weyl-polymer quantization /  |c Franco Strocchi. 
264 1 |a Cham :  |b Springer,  |c ©2016. 
300 |a 1 online resource (x, 97 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |b PDF 
347 |a text file 
490 1 |a Lecture Notes in Physics,  |x 0075-8450 ;  |v volume 904 
505 0 |a Introduction -- Heisenberg quantization and Weyl quantization -- Delocalization, gauge invariance and non-regular representations -- Quantum mechanical gauge models -- Non-regular representations in quantum field theory -- Diffeomorphism invariance and Weyl polymer quantization -- A generalization of Stone-von Neumann theorem.- Bibliography -- Index. 
504 |a Includes bibliographical references and index. 
546 |a English. 
520 |a The book gives an introduction to Weyl non-regular quantization suitable for the description of physically interesting quantum systems, where the traditional Dirac-Heisenberg quantization is not applicable. The latter implicitly assumes that the canonical variables describe observables, entailing necessarily the regularity of their exponentials (Weyl operators). However, in physically interesting cases -- typically in the presence of a gauge symmetry -- non-observable canonical variables are introduced for the description of the states, namely of the relevant representations of the observable algebra. In general, a gauge invariant ground state defines a non-regular representation of the gauge dependent Weyl operators, providing a mathematically consistent treatment of familiar quantum systems -- such as the electron in a periodic potential (Bloch electron), the Quantum Hall electron, or the quantum particle on a circle -- where the gauge transformations are, respectively, the lattice translations, the magnetic translations and the rotations of 2?. Relevant examples are also provided by quantum gauge field theory models, in particular by the temporal gauge of Quantum Electrodynamics, avoiding the conflict between the Gauss law constraint and the Dirac-Heisenberg canonical quantization. The same applies to Quantum Chromodynamics, where the non-regular quantization of the temporal gauge provides a simple solution of the U(1) problem and a simple link between the vacuum structure and the topology of the gauge group. Last but not least, Weyl non-regular quantization is briefly discussed from the perspective of the so-called polymer representations proposed for Loop Quantum Gravity in connection with diffeomorphism invariant vacuum states. 
650 0 |a Gauge invariance.  |0 http://id.loc.gov/authorities/subjects/sh85053535 
650 0 |a Physics.  |0 http://id.loc.gov/authorities/subjects/sh85101653 
650 0 |a Mathematical physics.  |0 http://id.loc.gov/authorities/subjects/sh85082129 
650 0 |a Quantum field theory.  |0 http://id.loc.gov/authorities/subjects/sh85109461 
650 0 |a String models.  |0 http://id.loc.gov/authorities/subjects/sh85129017 
650 0 |a Quantum theory.  |0 http://id.loc.gov/authorities/subjects/sh85109469 
650 0 |a Particles (Nuclear physics)  |0 http://id.loc.gov/authorities/subjects/sh85098374 
650 2 4 |a Elementary Particles, Quantum Field Theory. 
650 2 4 |a Mathematical Physics. 
650 2 4 |a Quantum Field Theories, String Theory. 
650 2 4 |a Quantum Physics. 
650 4 |a Atomic Physics. 
650 4 |a Physics. 
650 4 |a Physical Sciences & Mathematics. 
650 7 |a Gauge invariance.  |2 fast  |0 (OCoLC)fst00938998 
650 7 |a Mathematical physics.  |2 fast  |0 (OCoLC)fst01012104 
650 7 |a Particles (Nuclear physics)  |2 fast  |0 (OCoLC)fst01054130 
650 7 |a Physics.  |2 fast  |0 (OCoLC)fst01063025 
650 7 |a Quantum field theory.  |2 fast  |0 (OCoLC)fst01085105 
650 7 |a Quantum theory.  |2 fast  |0 (OCoLC)fst01085128 
650 7 |a String models.  |2 fast  |0 (OCoLC)fst01135293 
655 4 |a Electronic books. 
776 0 8 |i Printed edition:  |z 9783319176949 
830 0 |a Lecture notes in physics ;  |v v. 904.  |x 0075-8450  |0 http://id.loc.gov/authorities/names/n42015167 
880 |6 520-00/(S  |a The book gives an introduction to Weyl non-regular quantization suitable for the description of physically interesting quantum systems, where the traditional Dirac-Heisenberg quantization is not applicable. The latter implicitly assumes that the canonical variables describe observables, entailing necessarily the regularity of their exponentials (Weyl operators). However, in physically interesting cases -- typically in the presence of a gauge symmetry -- non-observable canonical variables are introduced for the description of the states, namely of the relevant representations of the observable algebra. In general, a gauge invariant ground state defines a non-regular representation of the gauge dependent Weyl operators, providing a mathematically consistent treatment of familiar quantum systems -- such as the electron in a periodic potential (Bloch electron), the Quantum Hall electron, or the quantum particle on a circle -- where the gauge transformations are, respectively, the lattice translations, the magnetic translations and the rotations of 2π. Relevant examples are also provided by quantum gauge field theory models, in particular by the temporal gauge of Quantum Electrodynamics, avoiding the conflict between the Gauss law constraint and the Dirac-Heisenberg canonical quantization. The same applies to Quantum Chromodynamics, where the non-regular quantization of the temporal gauge provides a simple solution of the U(1) problem and a simple link between the vacuum structure and the topology of the gauge group. Last but not least, Weyl non-regular quantization is briefly discussed from the perspective of the so-called polymer representations proposed for Loop Quantum Gravity in connection with diffeomorphism invariant vacuum states. 
903 |a HeVa 
929 |a oclccm 
999 f f |i 0af5a8e4-0296-5a99-92ba-397fa3177692  |s 2f2097dc-1cd6-519a-95e5-e415563dae09 
928 |t Library of Congress classification  |a QC174.45  |l Online  |c UC-FullText  |u https://link.springer.com/10.1007/978-3-319-17695-6  |z Springer Nature  |g ebooks  |i 12533869