On the geometry of some special projective varieties /

Saved in:
Bibliographic Details
Author / Creator:Russo, Francesco, 1959- author.
Imprint:Cham : Springer, [2016]
Description:1 online resource : illustrations
Language:English
Series:Lecture notes of the Unione Matematica Italiana ; 18
Lecture notes of the Unione Matematica Italiana ; 18.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11252206
Hidden Bibliographic Details
ISBN:9783319267654
3319267655
3319267647
9783319267647
9783319267647
Digital file characteristics:text file PDF
Notes:"Winner of the UMI Book Prize, 2015"--Cover.
Includes bibliographical references and index.
English.
Online resource; title from PDF title page (EBSCO, viewed February 01, 2016).
Summary:Providing an introduction to both classical and modern techniques in projective algebraic geometry, this monograph treats the geometrical properties of varieties embedded in projective spaces, their secant and tangent lines, the behavior of tangent linear spaces, the algebro-geometric and topological obstructions to their embedding into smaller projective spaces, and the classification of extremal cases. It also provides a solution of Hartshorne's Conjecture on Complete Intersections for the class of quadratic manifolds and new short proofs of previously known results, using the modern tools of Mori Theory and of rationally connected manifolds. The new approach to some of the problems considered can be resumed in the principle that, instead of studying a special embedded manifold uniruled by lines, one passes to analyze the original geometrical property on the manifold of lines passing through a general point and contained in the manifold. Once this embedded manifold, usually of lower codimension, is classified, one tries to reconstruct the original manifold, following a principle appearing also in other areas of geometry such as projective differential geometry or complex geometry.
Other form:Printed edition: 9783319267647
Standard no.:10.1007/978-3-319-26765-4

MARC

LEADER 00000cam a2200000Ii 4500
001 11252206
006 m o d
007 cr cnu|||unuuu
008 160127s2016 sz a ob 001 0 eng d
005 20240702212205.2
016 7 |a 019084983  |2 Uk 
019 |a 985064613  |a 993058269  |a 1005775266  |a 1012091268  |a 1026467600  |a 1048133228  |a 1111020173  |a 1112544455  |a 1113092864  |a 1113455037  |a 1117132028  |a 1122816038 
020 |a 9783319267654  |q (electronic bk.) 
020 |a 3319267655  |q (electronic bk.) 
020 |a 3319267647  |q (print) 
020 |a 9783319267647  |q (print) 
020 |z 9783319267647  |q (print) 
024 7 |a 10.1007/978-3-319-26765-4  |2 doi 
035 |a (OCoLC)936117876  |z (OCoLC)985064613  |z (OCoLC)993058269  |z (OCoLC)1005775266  |z (OCoLC)1012091268  |z (OCoLC)1026467600  |z (OCoLC)1048133228  |z (OCoLC)1111020173  |z (OCoLC)1112544455  |z (OCoLC)1113092864  |z (OCoLC)1113455037  |z (OCoLC)1117132028  |z (OCoLC)1122816038 
035 9 |a (OCLCCM-CC)936117876 
037 |a com.springer.onix.9783319267654  |b Springer Nature 
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d YDXCP  |d N$T  |d GW5XE  |d IDEBK  |d EBLCP  |d CDX  |d AZU  |d COO  |d OCLCF  |d DEBSZ  |d OCLCQ  |d IDB  |d JG0  |d IAD  |d JBG  |d ICW  |d VT2  |d Z5A  |d ILO  |d ICN  |d OCLCQ  |d ESU  |d FIE  |d IOG  |d U3W  |d MERUC  |d REB  |d UKMGB  |d OCLCQ  |d WYU  |d LEAUB  |d UKAHL  |d OCLCQ  |d DCT  |d ERF  |d UKBTH  |d LEATE  |d OCLCQ  |d AJS 
049 |a MAIN 
050 4 |a QA564 
072 7 |a MAT  |x 012000  |2 bisacsh 
072 7 |a PBMW  |2 bicssc 
100 1 |a Russo, Francesco,  |d 1959-  |e author.  |0 http://id.loc.gov/authorities/names/n95054217 
245 1 0 |a On the geometry of some special projective varieties /  |c Francesco Russo. 
264 1 |a Cham :  |b Springer,  |c [2016] 
300 |a 1 online resource :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture notes of the Unione Matematica Italiana ;  |v 18 
500 |a "Winner of the UMI Book Prize, 2015"--Cover. 
504 |a Includes bibliographical references and index. 
588 0 |a Online resource; title from PDF title page (EBSCO, viewed February 01, 2016). 
505 0 |a Preface.-Introduction -- 1. Tangent cones, tangent spaces, tangent stars; secant, tangent and tangent star varieties to an algebraic variety -- 2. Basics of Deformation Theory of Rational Curves on Projective Varieties -- 3. Fulton-Hansen Connectedness Theorem, Scorza Lemma and their applications to projective geometry -- 4. Local quadratic entry locus manifolds and conic connected manifolds -- 5. Hartshorne Conjectures and Severi varieties -- 6. Varieties n-covered by curves of a fixed degree and the XJC -- 7. Hypersurfaces with vanishing hessian.-Bibliography. 
520 |a Providing an introduction to both classical and modern techniques in projective algebraic geometry, this monograph treats the geometrical properties of varieties embedded in projective spaces, their secant and tangent lines, the behavior of tangent linear spaces, the algebro-geometric and topological obstructions to their embedding into smaller projective spaces, and the classification of extremal cases. It also provides a solution of Hartshorne's Conjecture on Complete Intersections for the class of quadratic manifolds and new short proofs of previously known results, using the modern tools of Mori Theory and of rationally connected manifolds. The new approach to some of the problems considered can be resumed in the principle that, instead of studying a special embedded manifold uniruled by lines, one passes to analyze the original geometrical property on the manifold of lines passing through a general point and contained in the manifold. Once this embedded manifold, usually of lower codimension, is classified, one tries to reconstruct the original manifold, following a principle appearing also in other areas of geometry such as projective differential geometry or complex geometry. 
546 |a English. 
650 0 |a Geometry, Algebraic.  |0 http://id.loc.gov/authorities/subjects/sh85054140 
650 0 |a Algebraic varieties.  |0 http://id.loc.gov/authorities/subjects/sh85003439 
650 7 |a Algebra.  |2 bicssc 
650 7 |a Geometry.  |2 bicssc 
650 7 |a Algebraic geometry.  |2 bicssc 
650 7 |a MATHEMATICS  |x Geometry  |x General.  |2 bisacsh 
650 7 |a Algebraic varieties.  |2 fast  |0 (OCoLC)fst00804944 
650 7 |a Geometry, Algebraic.  |2 fast  |0 (OCoLC)fst00940902 
655 0 |a Electronic books. 
655 4 |a Electronic books. 
776 0 8 |i Printed edition:  |z 9783319267647 
830 0 |a Lecture notes of the Unione Matematica Italiana ;  |v 18.  |0 http://id.loc.gov/authorities/names/no2006133097 
903 |a HeVa 
929 |a oclccm 
999 f f |i ecef8cff-58e9-5621-9d5a-672526be5bc5  |s f8fbc607-050f-531d-bdad-3fa59534fe4c 
928 |t Library of Congress classification  |a QA564  |l Online  |c UC-FullText  |u https://link.springer.com/10.1007/978-3-319-26765-4  |z Springer Nature  |g ebooks  |i 12534651