Heuristics, metaheuristics and approximate methods in planning and scheduling /

Saved in:
Bibliographic Details
Imprint:Cham : Springer, [2016]
Description:1 online resource
Language:English
Series:International Series in Operations Research & Management Science, 2214-7934 ; Volume 236
International series in operations research & management science ; Volume 236.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11252350
Hidden Bibliographic Details
Other authors / contributors:Rabadi, Ghaith, editor.
ISBN:9783319260242
3319260243
3319260227
9783319260228
9783319260235
3319260235
9783319798783
3319798782
Digital file characteristics:text file PDF
Notes:Includes bibliographical references at the end of each chapters and index.
Summary:The scope of this book is limited to heuristics, metaheuristics, and approximate methods and algorithms as applied to planning and scheduling problems. While it is not possible to give a comprehensive treatment of this topic in one book, the aim of this work is to provide the reader with a diverse set of planning and scheduling problems and different heuristic approaches to solve them. The problems range from traditional single stage and parallel machine problems to more modern settings such as robotic cells and flexible job shop networks. Furthermore, some chapters deal with deterministic problems while some others treat stochastic versions of the problems. Unlike most of the literature that deals with planning and scheduling problems in the manufacturing and production environments, in this book the environments were extended to nontraditional applications such as spatial scheduling (optimizing space over time), runway scheduling, and surgical scheduling. The solution methods used in the different chapters of the book also spread from well-established heuristics and metaheuristics such as Genetic Algorithms and Ant Colony Optimization to more recent ones such as Meta-RaPS.
Other form:Print version: 3319260227 9783319260228
Standard no.:10.1007/978-3-319-26024-2

MARC

LEADER 00000cam a2200000Ki 4500
001 11252350
005 20210625184254.6
006 m o d
007 cr |n|||||||||
008 160202s2016 sz ob 001 0 eng d
015 |a GBB8J4658  |2 bnb 
016 7 |a 019091072  |2 Uk 
019 |a 961003938  |a 1011794387  |a 1036294247  |a 1066478799  |a 1087391431  |a 1110892757  |a 1122812673  |a 1126116470 
020 |a 9783319260242  |q (electronic bk.) 
020 |a 3319260243  |q (electronic bk.) 
020 |z 3319260227 
020 |z 9783319260228 
020 |a 9783319260235  |q (print) 
020 |a 3319260235 
020 |a 9783319798783  |q (print) 
020 |a 3319798782 
024 7 |a 10.1007/978-3-319-26024-2  |2 doi 
035 |a (OCoLC)936412702  |z (OCoLC)961003938  |z (OCoLC)1011794387  |z (OCoLC)1036294247  |z (OCoLC)1066478799  |z (OCoLC)1087391431  |z (OCoLC)1110892757  |z (OCoLC)1122812673  |z (OCoLC)1126116470 
035 9 |a (OCLCCM-CC)936412702 
037 |a com.springer.onix.9783319260242  |b Springer Nature 
040 |a YDXCP  |b eng  |e rda  |e pn  |c YDXCP  |d N$T  |d IDEBK  |d EBLCP  |d N$T  |d AZU  |d OCLCF  |d DEBSZ  |d CDX  |d COO  |d OCLCO  |d YDX  |d UIU  |d OCLCQ  |d JG0  |d VT2  |d IAD  |d JBG  |d ICW  |d ESU  |d Z5A  |d ILO  |d MERER  |d OCLCQ  |d ICN  |d OCLCQ  |d IAS  |d IOG  |d NJR  |d U3W  |d REB  |d AU@  |d UKMGB  |d WYU  |d BRX  |d OCLCQ  |d OH1  |d DCT  |d ERF  |d ADU  |d UKBTH  |d OCLCQ  |d LEATE  |d OCLCQ 
049 |a MAIN 
050 4 |a QA76.9.A43  |b H48 2016 
072 7 |a MAT  |x 008000  |2 bisacsh 
072 7 |a KJT  |2 bicssc 
072 7 |a KJMD  |2 bicssc 
072 7 |a KJT  |2 thema 
072 7 |a KJMD  |2 thema 
245 0 0 |a Heuristics, metaheuristics and approximate methods in planning and scheduling /  |c Ghaith Rabadi, editor. 
264 1 |a Cham :  |b Springer,  |c [2016] 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a International Series in Operations Research & Management Science,  |x 2214-7934 ;  |v Volume 236 
520 |a The scope of this book is limited to heuristics, metaheuristics, and approximate methods and algorithms as applied to planning and scheduling problems. While it is not possible to give a comprehensive treatment of this topic in one book, the aim of this work is to provide the reader with a diverse set of planning and scheduling problems and different heuristic approaches to solve them. The problems range from traditional single stage and parallel machine problems to more modern settings such as robotic cells and flexible job shop networks. Furthermore, some chapters deal with deterministic problems while some others treat stochastic versions of the problems. Unlike most of the literature that deals with planning and scheduling problems in the manufacturing and production environments, in this book the environments were extended to nontraditional applications such as spatial scheduling (optimizing space over time), runway scheduling, and surgical scheduling. The solution methods used in the different chapters of the book also spread from well-established heuristics and metaheuristics such as Genetic Algorithms and Ant Colony Optimization to more recent ones such as Meta-RaPS. 
504 |a Includes bibliographical references at the end of each chapters and index. 
505 0 |a Introduction; Contents; Contributors; 1 Approximation Algorithms for Spatial Scheduling; 1.1 Introduction to Spatial Scheduling; 1.2 General Problem Formulation; 1.3 Feasible Schedule Construction: The Bottom-Left Time-Incrementing Heuristic; 1.4 The Packing Factor Heuristic; 1.4.1 Area Assignment Heuristic; 1.4.2 Job Input Orderings; 1.5 Local Search; 1.6 Metaheuristic for Randomized Priority Search (Meta-RaPS); 1.6.1 Construction Stage; 1.6.2 Improvement Stage; 1.6.3 Complete Meta-RaPS Algorithm; 1.7 Comparison of Methods: Computational Results on Benchmark Problems 
505 8 |a 1.7.1 Problem Generation1.7.2 Parameter Settings and Algorithm Implementations; 1.7.3 Results and Discussion; 1.8 Conclusion; References; 2 Estimating the Costs of Planned Changes Implied by Freezing Production Plans; 2.1 Introduction; 2.2 Literature Review; 2.2.1 Rolling Horizon Approach ; 2.2.2 Algorithm RH ; 2.2.3 Freezing the Schedule Within the Planning Horizon ; 2.2.4 Introducing Change Costs ; 2.3 Release Change Cost Model with Fixed Capacity; 2.3.1 Single-Product Model; 2.3.2 Mathematical Model; 2.3.3 Primal Model; 2.3.4 Dual Model; 2.3.5 Examples of Freezing the Schedules 
505 8 |a 2.4 Behavior of Positive and Negative Release Changes2.4.1 Excess Demand; 2.4.2 Excess Pre-release; 2.5 Release Change Costs for a Single Product; 2.5.1 Negative Release Change Costs; 2.5.2 Positive Release Change Costs; 2.5.3 Freezing Costs Inside an Epoch or Across Epochs; 2.6 Numerical Examples; 2.6.1 Settings and Assumptions; 2.6.2 Examples of Setting Release Change Costs; 2.7 Conclusion; References; 3 Stochastic Scheduling for a Network of Flexible Job Shops; 3.1 Introduction: Problem Statement and Related Literature; 3.2 Stochastic Model for a Network of Flexible Job Shops 
505 8 |a 3.2.1 Model Formulation for the NFJS Problem3.2.2 The L-Shaped Method for the NFJS Problem; 3.2.3 Optimality Cuts; 3.2.4 Alternative Valid Inequalities for Inducing Stage-II Feasibility That Also Provide a Stage-I Lower Bound; 3.3 Valid Inequalities for Further Tightening the Model Formulation; 3.3.1 Flow-Balance Constraints; 3.3.2 Re-Entrant Flow-Based Constraints; 3.3.3 Deadlock Prevention Constraints; 3.4 Computational Results; 3.4.1 Design of Test Problems; 3.4.2 Experimental Results; 3.5 Heuristic Methods for the Solution of the NFJS Problem; 3.6 Concluding Remarks; References 
505 8 |a 4 A Free-Slack-Based Genetic Algorithm for the Robotic Cell Problem with Controllable Processing Times4.1 Introduction; 4.2 Problem Description; 4.2.1 Mathematical Formulation; 4.2.2 Literature Review; 4.3 Free-Slack-Based Genetic Algorithm; 4.3.1 Initial Processing Times Generation; 4.3.1.1 Deterministic Generation Method; 4.3.1.2 Random Generation; 4.3.1.3 One by One Generation Method; 4.3.2 Approximate Solution of the RCP (with Fixed Processing Times); 4.3.3 Update of the Processing Times; 4.3.3.1 Elongate the Processing Times; 4.3.3.2 Update of the Critical Operations 
650 0 |a Heuristic algorithms.  |0 http://id.loc.gov/authorities/subjects/sh2009010989 
650 0 |a Scheduling.  |0 http://id.loc.gov/authorities/subjects/sh96002363 
650 7 |a MATHEMATICS  |x Discrete Mathematics.  |2 bisacsh 
650 7 |a Purchasing & supply management.  |2 bicssc 
650 7 |a Management of specific areas.  |2 bicssc 
650 7 |a Operational research.  |2 bicssc 
650 7 |a Heuristic algorithms.  |2 fast  |0 (OCoLC)fst01749726 
650 7 |a Scheduling.  |2 fast  |0 (OCoLC)fst01106653 
655 4 |a Electronic books. 
700 1 |a Rabadi, Ghaith,  |e editor. 
776 0 8 |i Print version:  |z 3319260227  |z 9783319260228  |w (OCoLC)922630448 
830 0 |a International series in operations research & management science ;  |v Volume 236.  |0 http://id.loc.gov/authorities/names/n95066827 
903 |a HeVa 
929 |a oclccm 
999 f f |i 0e9ef3e4-6c23-550b-ba35-99eb2d5c4199  |s 976d6c57-e10c-512a-8988-8c666b44e1f3 
928 |t Library of Congress classification  |a QA76.9.A43 H48 2016  |l Online  |c UC-FullText  |u https://link.springer.com/10.1007/978-3-319-26024-2  |z Springer Nature  |g ebooks  |i 12534748