Partial differential equations : modeling, analysis and numerical approximation /

Saved in:
Bibliographic Details
Author / Creator:Le Dret, H., author.
Imprint:Cham : Birkhäuser, 2016.
Description:1 online resource (xi, 395 pages) : illustrations (some color)
Language:English
Series:International series of numerical mathematics, 0373-3149 ; volume 168
International series of numerical mathematics ; v. 168.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11253028
Hidden Bibliographic Details
Other authors / contributors:Lucquin, Brigitte, author.
ISBN:9783319270678
3319270672
3319270656
9783319270654
9783319270654
Digital file characteristics:text file PDF
Notes:Includes bibliographical references and index.
English.
Online resource; title from PDF title page (SpringerLink, viewed February 18, 2016).
Summary:This book is devoted to the study of partial differential equation problems both from the theoretical and numerical points of view. After presenting modeling aspects, it develops the theoretical analysis of partial differential equation problems for the three main classes of partial differential equations: elliptic, parabolic and hyperbolic. Several numerical approximation methods adapted to each of these examples are analyzed: finite difference, finite element and finite volumes methods, and they are illustrated using numerical simulation results. Although parts of the book are accessible to Bachelor students in mathematics or engineering, it is primarily aimed at Masters students in applied mathematics or computational engineering. The emphasis is on mathematical detail and rigor for the analysis of both continuous and discrete problems.
Other form:Printed edition: 9783319270654
Standard no.:10.1007/978-3-319-27067-8

MARC

LEADER 00000cam a2200000Ii 4500
001 11253028
005 20210625184005.3
006 m o d
007 cr cnu|||unuuu
008 160218s2016 sz a ob 001 0 eng d
015 |a GBB8J9346  |2 bnb 
016 7 |a 019098184  |2 Uk 
019 |a 985043305  |a 993069513  |a 1005808185  |a 1012011240  |a 1197537899 
020 |a 9783319270678  |q (electronic bk.) 
020 |a 3319270672  |q (electronic bk.) 
020 |a 3319270656  |q (print) 
020 |a 9783319270654  |q (print) 
020 |z 9783319270654 
024 7 |a 10.1007/978-3-319-27067-8  |2 doi 
035 |a (OCoLC)939596939  |z (OCoLC)985043305  |z (OCoLC)993069513  |z (OCoLC)1005808185  |z (OCoLC)1012011240  |z (OCoLC)1197537899 
035 9 |a (OCLCCM-CC)939596939 
037 |a com.springer.onix.9783319270678  |b Springer Nature 
040 |a GW5XE  |b eng  |e rda  |e pn  |c GW5XE  |d YDXCP  |d AZU  |d OCLCF  |d COO  |d UAB  |d JG0  |d OCLCQ  |d IAD  |d JBG  |d ICW  |d VT2  |d ESU  |d Z5A  |d ILO  |d ICN  |d FIE  |d IOG  |d U3W  |d WYU  |d UKMGB  |d OCLCQ  |d AJS  |d SFB 
049 |a MAIN 
050 4 |a QA377 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
100 1 |a Le Dret, H.,  |e author.  |0 http://id.loc.gov/authorities/names/n94100121 
245 1 0 |a Partial differential equations :  |b modeling, analysis and numerical approximation /  |c Hervé Le Dret, Brigitte Lucquin. 
264 1 |a Cham :  |b Birkhäuser,  |c 2016. 
300 |a 1 online resource (xi, 395 pages) :  |b illustrations (some color) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a International series of numerical mathematics,  |x 0373-3149 ;  |v volume 168 
504 |a Includes bibliographical references and index. 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed February 18, 2016). 
505 0 |a Foreword -- Mathematical modeling and PDEs -- The finite difference method for elliptic problems -- A review of analysis -- The variational formulation of elliptic PDEs.-Variational approximation methods for elliptic PDEs -- The finite element method in dimension two -- The heat equation -- The finite difference method for the heat equation -- The wave equation -- The finite volume method -- Index -- References. 
520 |a This book is devoted to the study of partial differential equation problems both from the theoretical and numerical points of view. After presenting modeling aspects, it develops the theoretical analysis of partial differential equation problems for the three main classes of partial differential equations: elliptic, parabolic and hyperbolic. Several numerical approximation methods adapted to each of these examples are analyzed: finite difference, finite element and finite volumes methods, and they are illustrated using numerical simulation results. Although parts of the book are accessible to Bachelor students in mathematics or engineering, it is primarily aimed at Masters students in applied mathematics or computational engineering. The emphasis is on mathematical detail and rigor for the analysis of both continuous and discrete problems. 
546 |a English. 
650 0 |a Differential equations, Partial.  |0 http://id.loc.gov/authorities/subjects/sh85037912 
650 0 |a Differential equations, Partial  |x Numerical solutions.  |0 http://id.loc.gov/authorities/subjects/sh85037915 
650 7 |a Differential calculus & equations.  |2 bicssc 
650 7 |a Mathematics  |x Differential Equations.  |2 bisacsh 
650 7 |a Differential equations, Partial.  |2 fast  |0 (OCoLC)fst00893484 
650 7 |a Differential equations, Partial  |x Numerical solutions.  |2 fast  |0 (OCoLC)fst00893488 
655 0 |a Electronic books. 
655 4 |a Electronic books. 
700 1 |a Lucquin, Brigitte,  |e author.  |0 http://id.loc.gov/authorities/names/n97063983 
776 0 8 |i Printed edition:  |z 9783319270654 
830 0 |a International series of numerical mathematics ;  |v v. 168.  |x 0373-3149  |0 http://id.loc.gov/authorities/names/n42013597 
903 |a HeVa 
929 |a oclccm 
999 f f |i 18cda92c-940a-5ae9-9b95-2bd1716dba8b  |s f3c3d8be-84b8-54b9-b35b-95e3aebb8ad5 
928 |t Library of Congress classification  |a QA377  |l Online  |c UC-FullText  |u https://link.springer.com/10.1007/978-3-319-27067-8  |z Springer Nature  |g ebooks  |i 12535097