Big visual data analysis : scene classification and geometric labeling /

Saved in:
Bibliographic Details
Author / Creator:Chen, Chen (Computer vision scientist)
Imprint:Singapore : Springer, 2016.
Description:1 online resource (x, 122 pages) : illustrations (color illustrations)
Language:English
Series:SpringerBriefs in electrical and computer engineering, Signal processing, 2191-8112
SpringerBriefs in electrical and computer engineering. Signal processing.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11253201
Hidden Bibliographic Details
Other authors / contributors:Ren, Yuzhuo, author.
Kuo, C.-C. Jay (Chung-Chieh Jay), author.
ISBN:9789811006319
9811006318
9811006296
9789811006296
Digital file characteristics:text file
PDF
Notes:Includes bibliographical references.
English.
Online resource; title from PDF title page (SpringerLink, viewed March 1, 2016).
Summary:This book offers an overview of traditional big visual data analysis approaches and provides state-of-the-art solutions for several scene comprehension problems, indoor/outdoor classification, outdoor scene classification, and outdoor scene layout estimation. It is illustrated with numerous natural and synthetic color images, and extensive statistical analysis is provided to help readers visualize big visual data distribution and the associated problems. Although there has been some research on big visual data analysis, little work has been published on big image data distribution analysis using the modern statistical approach described in this book. By presenting a complete methodology on big visual data analysis with three illustrative scene comprehension problems, it provides a generic framework that can be applied to other big visual data analysis tasks.
Other form:Printed edition: 9789811006296
Standard no.:10.1007/978-981-10-0631-9

MARC

LEADER 00000cam a2200000Ii 4500
001 11253201
006 m o d
007 cr cnu|||unuuu
008 160226s2016 si a ob 000 0 eng d
005 20240510213206.8
015 |a GBB966748  |2 bnb 
016 7 |a 019336091  |2 Uk 
019 |a 985057191  |a 1005829409  |a 1011848854  |a 1026449554  |a 1048172879  |a 1066468207  |a 1086552723  |a 1110810864  |a 1112532024  |a 1112807529  |a 1113124979  |a 1116816627  |a 1122817787  |a 1159608616 
020 |a 9789811006319  |q (electronic bk.) 
020 |a 9811006318  |q (electronic bk.) 
020 |z 9811006296  |q (print) 
020 |z 9789811006296  |q (print) 
024 7 |a 10.1007/978-981-10-0631-9  |2 doi 
035 |a (OCoLC)941134049  |z (OCoLC)985057191  |z (OCoLC)1005829409  |z (OCoLC)1011848854  |z (OCoLC)1026449554  |z (OCoLC)1048172879  |z (OCoLC)1066468207  |z (OCoLC)1086552723  |z (OCoLC)1110810864  |z (OCoLC)1112532024  |z (OCoLC)1112807529  |z (OCoLC)1113124979  |z (OCoLC)1116816627  |z (OCoLC)1122817787  |z (OCoLC)1159608616 
035 9 |a (OCLCCM-CC)941134049 
037 |a com.springer.onix.9789811006319  |b Springer Nature 
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d GW5XE  |d YDXCP  |d N$T  |d IDEBK  |d AZU  |d OCLCF  |d EBLCP  |d CDX  |d UWO  |d COO  |d OHI  |d IDB  |d UAB  |d IAD  |d JBG  |d ICW  |d VT2  |d Z5A  |d ILO  |d ICN  |d OCLCQ  |d ESU  |d IOG  |d U3W  |d MERUC  |d REB  |d OCLCQ  |d EZ9  |d OCLCQ  |d WYU  |d UKMGB  |d UKAHL  |d OCLCQ  |d DCT  |d ERF  |d UKBTH  |d LEATE  |d OCLCQ  |d AJS  |d TXI  |d OCLCQ  |d OCLCO 
049 |a MAIN 
050 4 |a TA1634 
072 7 |a COM  |x 000000  |2 bisacsh 
072 7 |a TTBM  |2 bicssc 
072 7 |a UYS  |2 bicssc 
100 1 |a Chen, Chen  |c (Computer vision scientist)  |0 http://id.loc.gov/authorities/names/no2020080873 
245 1 0 |a Big visual data analysis :  |b scene classification and geometric labeling /  |c Chen Chen, Yuzhuo Ren, C.-C. Jay Kuo. 
264 1 |a Singapore :  |b Springer,  |c 2016. 
300 |a 1 online resource (x, 122 pages) :  |b illustrations (color illustrations) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
347 |b PDF 
490 1 |a SpringerBriefs in electrical and computer engineering, Signal processing,  |x 2191-8112 
504 |a Includes bibliographical references. 
505 0 |a Introduction -- Scene Understanding Datasets -- Indoor/Outdoor classification with Multiple Experts -- Outdoor Scene Classification Using Labeled Segments -- Global-Attributes Assisted Outdoor Scene Geometric Labeling -- Conclusion and Future Work. 
520 |a This book offers an overview of traditional big visual data analysis approaches and provides state-of-the-art solutions for several scene comprehension problems, indoor/outdoor classification, outdoor scene classification, and outdoor scene layout estimation. It is illustrated with numerous natural and synthetic color images, and extensive statistical analysis is provided to help readers visualize big visual data distribution and the associated problems. Although there has been some research on big visual data analysis, little work has been published on big image data distribution analysis using the modern statistical approach described in this book. By presenting a complete methodology on big visual data analysis with three illustrative scene comprehension problems, it provides a generic framework that can be applied to other big visual data analysis tasks. 
546 |a English. 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed March 1, 2016). 
650 0 |a Computer vision.  |0 http://id.loc.gov/authorities/subjects/sh85029549 
650 0 |a Image processing  |x Digital techniques.  |0 http://id.loc.gov/authorities/subjects/sh85064447 
650 0 |a Big data.  |0 http://id.loc.gov/authorities/subjects/sh2012003227 
650 7 |a COMPUTERS  |x General.  |2 bisacsh 
650 7 |a Big data.  |2 fast  |0 (OCoLC)fst01892965 
650 7 |a Computer vision.  |2 fast  |0 (OCoLC)fst00872687 
650 7 |a Image processing  |x Digital techniques.  |2 fast  |0 (OCoLC)fst00967508 
655 4 |a Electronic books. 
700 1 |a Ren, Yuzhuo,  |e author.  |0 http://id.loc.gov/authorities/names/nb2016022862 
700 1 |a Kuo, C.-C. Jay  |q (Chung-Chieh Jay),  |e author.  |0 http://id.loc.gov/authorities/names/n89673531 
776 0 8 |i Printed edition:  |z 9789811006296 
830 0 |a SpringerBriefs in electrical and computer engineering.  |p Signal processing. 
903 |a HeVa 
929 |a oclccm 
999 f f |i 7fe3f763-c610-504a-9c4f-c3453a345287  |s d9a59181-d6a2-507c-97ae-a5d3fb28470f 
928 |t Library of Congress classification  |a TA1634  |l Online  |c UC-FullText  |u https://link.springer.com/10.1007/978-981-10-0631-9  |z Springer Nature  |g ebooks  |i 12535221