Harmonic analysis on symmetric spaces -- higher rank spaces, positive definite matrix space and generalizations /

Saved in:
Bibliographic Details
Author / Creator:Terras, Audrey, author.
Uniform title:Harmonic analysis on symmetric spaces and applications
Edition:Second edition.
Imprint:New York, NY : Springer, 2016.
Description:1 online resource (xv, 487 pages) : illustrations (some color)
Language:English
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11255370
Hidden Bibliographic Details
ISBN:9781493934089
1493934082
1493934066
9781493934065
9781493934065
Digital file characteristics:text file
PDF
Notes:Includes bibliographical references and index.
English.
Online resource; title from PDF title page (SpringerLink, viewed May 4, 2016).
Summary:This text explores the geometry and analysis of higher rank analogues of the symmetric spaces introduced in volume one. To illuminate both the parallels and differences of the higher rank theory, the space of positive matrices is treated in a manner mirroring that of the upper-half space in volume one. This concrete example furnishes motivation for the general theory of noncompact symmetric spaces, which is outlined in the final chapter. The book emphasizes motivation and comprehensibility, concrete examples and explicit computations (by pen and paper, and by computer), history, and, above all, applications in mathematics, statistics, physics, and engineering. The second edition includes new sections on Donald St. P. Richards's central limit theorem for O(n)-invariant random variables on the symmetric space of GL(n, R), on random matrix theory, and on advances in the theory of automorphic forms on arithmetic groups.
Other form:Printed edition: 9781493934065
Standard no.:10.1007/978-1-4939-3408-9

MARC

LEADER 00000cam a2200000Ii 4500
001 11255370
006 m o d
007 cr cnu|||unuuu
008 160504s2016 nyua ob 001 0 eng d
005 20240718153433.8
015 |a GBB8M4832  |2 bnb 
016 7 |a 019140370  |2 Uk 
019 |a 948632254  |a 985062057  |a 1005771014  |a 1011794664  |a 1026461660  |a 1048188969  |a 1058368841  |a 1066635351  |a 1086560529  |a 1112592976  |a 1112854686  |a 1112980661  |a 1116980313  |a 1160078129 
020 |a 9781493934089  |q (electronic bk.) 
020 |a 1493934082  |q (electronic bk.) 
020 |a 1493934066  |q (print) 
020 |a 9781493934065  |q (print) 
020 |z 9781493934065  |q (print) 
024 7 |a 10.1007/978-1-4939-3408-9  |2 doi 
035 |a (OCoLC)948661162  |z (OCoLC)948632254  |z (OCoLC)985062057  |z (OCoLC)1005771014  |z (OCoLC)1011794664  |z (OCoLC)1026461660  |z (OCoLC)1048188969  |z (OCoLC)1058368841  |z (OCoLC)1066635351  |z (OCoLC)1086560529  |z (OCoLC)1112592976  |z (OCoLC)1112854686  |z (OCoLC)1112980661  |z (OCoLC)1116980313  |z (OCoLC)1160078129 
035 9 |a (OCLCCM-CC)948661162 
037 |a com.springer.onix.9781493934089  |b Springer Nature 
040 |a GW5XE  |b eng  |e rda  |e pn  |c GW5XE  |d AZU  |d YDXCP  |d COO  |d OCLCF  |d KSU  |d JG0  |d OCLCQ  |d IAD  |d JBG  |d ICW  |d VT2  |d Z5A  |d ILO  |d ICN  |d FIE  |d AUD  |d ESU  |d OCLCQ  |d IOG  |d U3W  |d REB  |d AU@  |d OCLCQ  |d WYU  |d IAD  |d EBLCP  |d UKMGB  |d OCLCQ  |d LEAUB  |d HS0  |d OCLCQ  |d ERF  |d UKBTH  |d OCLCQ  |d UKAHL  |d OCLCQ  |d OCLCO 
049 |a MAIN 
050 4 |a QA403 
072 7 |a PBKD  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
100 1 |a Terras, Audrey,  |e author.  |0 http://id.loc.gov/authorities/names/n84172127 
240 1 0 |a Harmonic analysis on symmetric spaces and applications 
245 1 0 |a Harmonic analysis on symmetric spaces -- higher rank spaces, positive definite matrix space and generalizations /  |c Audrey Terras. 
250 |a Second edition. 
264 1 |a New York, NY :  |b Springer,  |c 2016. 
300 |a 1 online resource (xv, 487 pages) :  |b illustrations (some color) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
347 |b PDF 
504 |a Includes bibliographical references and index. 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed May 4, 2016). 
520 |a This text explores the geometry and analysis of higher rank analogues of the symmetric spaces introduced in volume one. To illuminate both the parallels and differences of the higher rank theory, the space of positive matrices is treated in a manner mirroring that of the upper-half space in volume one. This concrete example furnishes motivation for the general theory of noncompact symmetric spaces, which is outlined in the final chapter. The book emphasizes motivation and comprehensibility, concrete examples and explicit computations (by pen and paper, and by computer), history, and, above all, applications in mathematics, statistics, physics, and engineering. The second edition includes new sections on Donald St. P. Richards's central limit theorem for O(n)-invariant random variables on the symmetric space of GL(n, R), on random matrix theory, and on advances in the theory of automorphic forms on arithmetic groups. 
546 |a English. 
505 0 |a Intro; Preface to the First Edition; Preface to the Second Edition; Contents; List of Figures; 1 The Space Pn of Positive nn Matrices; 1.1 Geometry and Analysis on Pn; 1.1.1 Introduction; 1.1.2 Elementary Results; 1.1.3 Geodesics and Arc Length; 1.1.4 Measure and Integration on Pn; 1.1.5 Differential Operators on Pn; 1.1.6 A List of the Main Formulas Derived in Section 1.1; 1.1.7 An Application to Multivariate Statistics; 1.2 Special Functions on Pn; 1.2.1 Power and Gamma Functions; 1.2.2 K-Bessel Functions; 1.2.3 Spherical Functions; 1.2.4 The Wishart Distribution 
505 8 |a 1.2.5 Richards' Extension of the Asymptotics of Spherical Functions for P3 to Pn for General n1.3 Harmonic Analysis on Pn in Polar Coordinates; 1.3.1 Properties of the Helgason-Fourier Transform on Pn; 1.3.2 Beginning of the Discussion of Part (1) of Theorem 1.3.1-Steps 1 and 2; 1.3.3 End of the Discussion of Part (1) of Theorem 1.3.1-Steps 3 and 4; 1.3.4 Applications-Richards' Central Limit Theorem for K-Invariant Functions on Pn; 1.3.5 Quantum Chaos and Random Matrix Theory; 1.3.6 Other Directions in the Labyrinth; 1.4 Fundamental Domains for Pn/GL(n, Z); 1.4.1 Introduction 
505 8 |a 1.4.2 Minkowski's Fundamental Domain1.4.3 Grenier's Fundamental Domain; Grenier's Reduction Algorithm; 1.4.4 Integration over Fundamental Domains; 1.5 Maass Forms for GL(n, Z) and Harmonic Analysis on Pn/GL(n, Z); 1.5.1 Analytic Continuation of Eisenstein Series by the Method of Inserting Larger Parabolic Subgroups; 1.5.2 Hecke Operators and Analytic Continuation of L-Functions Associated with Maass Forms by the Method of Theta Functions; 1.5.3 Fourier Expansions of Eisenstein Series; Generalities on Fourier Expansions of Eisenstein Series; Remarks on Maass Cusp Forms 
505 8 |a 1.5.4 Update on Maass Cusp Forms for SL(3,Z) and L-Functions Plus Truncating Eisenstein SeriesMaass Cusp Forms for SL(3,Z) and L-Functions; Langlands' Inner Product Formulas for Truncated Eisenstein Series; 1.5.5 Remarks on Harmonic Analysis on the Fundamental Domain; 1.5.6 Finite and Other Analogues; 2 The General Noncompact Symmetric Space; 2.1 Geometry and Analysis on G/K; 2.1.1 Symmetric Spaces, Lie Groups, and Lie Algebras; 2.1.2 Examples of Symmetric Spaces; Plan for Construction of Noncompact Symmetric Spaces of Type III; Type a Examples; Type c Examples 
505 8 |a 2.1.3 Cartan, Iwasawa, and Polar Decompositions, RootsThree Examples of Iwasawa Decompositions of Real Semisimple Lie Algebras; Examples of the Polar Decomposition; 2.1.4 Geodesics and the Weyl Group; 2.1.5 Integral Formulas; Examples; Invariant Volume Elements on the Symmetric Spaces of GL(n, R) and Sp(n, R); 2.1.6 Invariant Differential Operators; 2.1.7 Special Functions and Harmonic Analysis on Symmetric Spaces; 2.1.8 An Example of a Symmetric Space of Type IV: The Quaternionic Upper Half 3-Space; 2.2 Geometry and Analysis on ""026E30F G/K; 2.2.1 Fundamental Domains; 2.2.2 Automorphic Forms 
650 0 |a Harmonic analysis.  |0 http://id.loc.gov/authorities/subjects/sh85058939 
650 0 |a Symmetric spaces.  |0 http://id.loc.gov/authorities/subjects/sh85131437 
650 7 |a Number theory.  |2 bicssc 
650 7 |a Geometry.  |2 bicssc 
650 7 |a Combinatorics & graph theory.  |2 bicssc 
650 7 |a Applied mathematics.  |2 bicssc 
650 7 |a Probability & statistics.  |2 bicssc 
650 7 |a Complex analysis, complex variables.  |2 bicssc 
650 7 |a Mathematics  |x Number Theory.  |2 bisacsh 
650 7 |a Mathematics  |x Geometry  |x General.  |2 bisacsh 
650 7 |a Mathematics  |x Combinatorics.  |2 bisacsh 
650 7 |a Mathematics  |x Applied.  |2 bisacsh 
650 7 |a Mathematics  |x Probability & Statistics  |x General.  |2 bisacsh 
650 7 |a Mathematics  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Harmonic analysis.  |2 fast  |0 (OCoLC)fst00951490 
650 7 |a Symmetric spaces.  |2 fast  |0 (OCoLC)fst01140808 
655 4 |a Electronic books. 
776 0 8 |i Printed edition:  |z 9781493934065 
903 |a HeVa 
929 |a oclccm 
999 f f |i e21db3d1-faa6-5e33-b4fb-af3b6a1c7885  |s f053d7ec-e98f-5e65-917c-22a2e1502c64 
928 |t Library of Congress classification  |a QA403  |l Online  |c UC-FullText  |u https://link.springer.com/10.1007/978-1-4939-3408-9  |z Springer Nature  |g ebooks  |i 12536667