Big data and learning analytics in higher education : current theory and practice /

Saved in:
Bibliographic Details
Imprint:Switzerland : Springer, [2017]
©2017
Description:1 online resource
Language:English
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11265713
Hidden Bibliographic Details
Other authors / contributors:Daniel, Ben Kei, 1971- editor.
ISBN:9783319065205
3319065203
9783319065199
331906519X
Notes:Includes bibliographical references index.
Online resource, title from PDF title page (Ebsco, viewed on September 7, 2016).
Summary:This book focuses on the uses of big data in the context of higher education. The book describes a wide range of administrative and operational data gathering processes aimed at assessing institutional performance and progress in order to predict future performance, and identifies potential issues related to academic programming, research, teaching and learning. Big data refers to data which is fundamentally too big and complex and moves too fast for the processing capacity of conventional database systems. The value of big data is the ability to identify useful data and turn it into useable information by identifying patterns and deviations from patterns.
Other form:Print version: Big data and learning analytics in higher education. Switzerland : Springer, [2017] 331906519X
Standard no.:99971908626

MARC

LEADER 00000cam a2200000Ii 4500
001 11265713
006 m o d
007 cr cnu|||unuuu
008 160831t20172017sz a ob 001 0 eng d
005 20240625211050.2
015 |a GBB8N1614  |2 bnb 
016 7 |a 019144231  |2 Uk 
019 |a 957610132  |a 960710745  |a 960833315  |a 961000556  |a 961309220  |a 965431791 
020 |a 9783319065205  |q (electronic bk.) 
020 |a 3319065203  |q (electronic bk.) 
020 |z 9783319065199  |q (print) 
020 |z 331906519X 
024 8 |a 99971908626 
035 |a (OCoLC)957557899  |z (OCoLC)957610132  |z (OCoLC)960710745  |z (OCoLC)960833315  |z (OCoLC)961000556  |z (OCoLC)961309220  |z (OCoLC)965431791 
035 9 |a (OCLCCM-CC)957557899 
037 |a 950792  |b MIL 
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d IDEBK  |d EBLCP  |d N$T  |d ORE  |d YDX  |d OCLCF  |d IDB  |d UAB  |d IOG  |d CUY  |d CCO  |d VT2  |d ESU  |d JBG  |d IAD  |d ICW  |d ICN  |d VGM  |d OCLCQ  |d U3W  |d MERUC  |d OCLCQ  |d UKMGB  |d AU@  |d OL$  |d OCLCQ  |d U@J 
049 |a MAIN 
050 4 |a LB2326.3 
072 7 |a EDU  |x 015000  |2 bisacsh 
245 0 0 |a Big data and learning analytics in higher education :  |b current theory and practice /  |c Ben Kei Daniel, editor. 
264 1 |a Switzerland :  |b Springer,  |c [2017] 
264 4 |c ©2017 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references index. 
588 0 |a Online resource, title from PDF title page (Ebsco, viewed on September 7, 2016). 
505 0 |a Chapter 1: Overview of Big Data and Analytics in Higher Education -- Chapter 2: Thoughts on Recent Trends and Future Research Perspectives in Big Data and Analytics in Higher Education -- Chapter 3: Big Data in Higher Education: The Big Picture -- Chapter 4: Preparing the Next Generation of Education Researchers for Big Data in Higher Education -- Chapter 5: Managing the Embedded Digital Ecosystems (EDE) Using Big Data Paradigm -- Chapter 6: The Contemporary Research University and the Contest for Deliberative Space -- Part II: LEARNING ANALYTICS -- Chapter 7: Ethical Considerations in Adopting a University- and System-Wide Approach to Data and Learning Analytics -- Chapter 8: Big Data, Higher Education and Learning Analytics: Beyond Justice, Towards an Ethics of Care -- Chapter 9: Curricular and Learning Analytics: A Big Data Perspective -- Chapter 10: Implementing a Learning Analytics Intervention and Evaluation Framework: What Works? -- Chapter 11: GraphFES: A Web Service and Application for Moodle Message Board Social Graph Extraction -- Chapter 12: Toward an Open Learning Analytics Ecosystem -- Chapter 13: Predicting Four-Year Student Success from Two-Year Student Data -- Chapter 14: Assessing Science Inquiry Skills in an Immersive, Conversation-Based Scenario -- Chapter 15: Learning Analytics of Clinical Anatomy e-Cases. 
520 |a This book focuses on the uses of big data in the context of higher education. The book describes a wide range of administrative and operational data gathering processes aimed at assessing institutional performance and progress in order to predict future performance, and identifies potential issues related to academic programming, research, teaching and learning. Big data refers to data which is fundamentally too big and complex and moves too fast for the processing capacity of conventional database systems. The value of big data is the ability to identify useful data and turn it into useable information by identifying patterns and deviations from patterns. 
650 0 |a Education, Higher  |x Research.  |0 http://id.loc.gov/authorities/subjects/sh85041069 
650 0 |a Big data.  |0 http://id.loc.gov/authorities/subjects/sh2012003227 
650 7 |a Teaching skills & techniques.  |2 bicssc 
650 7 |a Educational equipment & technology, computer-aided learning (Calif.)  |2 bicssc 
650 7 |a EDUCATION  |x Higher.  |2 bisacsh 
650 7 |a Big data.  |2 fast  |0 (OCoLC)fst01892965 
650 7 |a Education, Higher  |x Research.  |2 fast  |0 (OCoLC)fst00903093 
655 0 |a Electronic books. 
655 4 |a Electronic books. 
700 1 |a Daniel, Ben Kei,  |d 1971-  |e editor.  |0 http://id.loc.gov/authorities/names/n2009001283 
776 0 8 |i Print version:  |t Big data and learning analytics in higher education.  |d Switzerland : Springer, [2017]  |z 331906519X  |w (OCoLC)962055750 
903 |a HeVa 
929 |a oclccm 
999 f f |i b227f624-696d-5a28-9bed-ae5291d11354  |s a3435274-febd-5c06-9f2d-1b23009e6cde 
928 |t Library of Congress classification  |a LB2326.3  |l Online  |c UC-FullText  |u https://link.springer.com/10.1007/978-3-319-06520-5  |z Springer Nature  |g ebooks  |i 12539769