Boundary-layer theory /

Saved in:
Bibliographic Details
Author / Creator:Schlichting, Hermann, 1907-1982, author.
Uniform title:Grenzschicht-Theorie. English
Edition:Ninth edition.
Imprint:Berlin : Springer, [2016]
©2017
Description:1 online resource (xxviii, 805 pages) : illustrations
Language:English
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11267660
Hidden Bibliographic Details
Other authors / contributors:Gersten, K., author.
Mayes, Katherine, translator.
ISBN:9783662529195
366252919X
3662529173
9783662529171
9783662529171
Notes:Includes bibliographical references and index.
Online resource; title from PDF title page (SpringerLink, viewed October 13, 2016).
Summary:This new edition of the near-legendary textbook by Schlichting and revised by Gersten presents a comprehensive overview of boundary-layer theory and its application to all areas of fluid mechanics, with particular emphasis on the flow past bodies (e.g. aircraft aerodynamics). The new edition features an updated reference list and over 100 additional changes throughout the book, reflecting the latest advances on the subject.
Other form:Print version: Schlichting, Hermann. Boundary-layer theory. Ninth edition. Berlin, [Germany] ; Heidelberg, [Germany] : Springer, c2017 xxviii, 805 pages 9783662529171
Standard no.:10.1007/978-3-662-52919-5
Table of Contents:
  • Machine generated contents note: pt. I Fundamentals of Viscous Flows
  • 1. Some Features of Viscous Flows
  • 1.1. Real and Ideal Fluids
  • 1.2. Viscosity
  • 1.3. Reynolds Number
  • 1.4. Laminar and Turbulent Flows
  • 1.5. Asymptotic Behaviour at Large Reynolds Numbers
  • 1.6. Comparison of Measurements Using the Inviscid Limiting Solution
  • 1.7. Summary
  • 2. Fundamentals of Boundary
  • Layer Theory
  • 2.1. Boundary
  • Layer Concept
  • 2.2. Laminar Boundary Layer on a Flat Plate at Zero Incidence
  • 2.3. Turbulent Boundary Layer on a Flat Plate at Zero Incidence
  • 2.4. Fully Developed Turbulent Flow in a Pipe
  • 2.5. Boundary Layer on an Airfoil
  • 2.6. Separation of the Boundary Layer
  • 2.7. Overview of the Following Material
  • 3. Field Equations for Flows of Newtonian Fluids
  • 3.1. Description of Flow Fields
  • 3.2. Continuity Equation
  • 3.3. Momentum Equation
  • 3.4. General Stress State of Deformable Bodies
  • 3.5. General State of Deformation of Flowing Fluids
  • 3.6. Relation Between Stresses and Rate of Deformation
  • 3.7. Stokes Hypothesis
  • 3.8. Bulk Viscosity and Thermodynamic Pressure
  • 3.9. Navier
  • Stokes Equations
  • 3.10. Energy Equation
  • 3.11. Equations of Motion for Arbitrary Coordinate Systems (Summary)
  • 3.12. Equations of Motion for Cartesian Coordinates in Index Notation
  • 3.13. Equations of Motion in Different Coordinate Systems
  • 4. General Properties of the Equations of Motion
  • 4.1. Similarity Laws
  • 4.2. Similarity Laws for Flow with Buoyancy Forces (Mixed Forced and Natural Convection)
  • 4.3. Similarity Laws for Natural Convection
  • 4.4. Vorticity Transport Equation
  • 4.5. Limit of Very Small Reynolds Numbers
  • 4.6. Limit of Very Large Reynolds Numbers
  • 4.7. Mathematical Example of the Limit Re [→] [∞]
  • 4.8. Non
  • Uniqueness of Solutions of the Navier
  • Stokes Equations
  • 5. Exact Solutions of the Navier
  • Stokes Equations
  • 5.1. Steady Plane Flows
  • 5.1.1. Couette
  • Poiseuille Flows
  • 5.1.2. Jeffery
  • Hamel Flows (Fully Developed Nozzle and Diffuser Flows)
  • 5.1.3. Plane Stagnation
  • Point Flow
  • 5.1.4. Flow Past a Parabolic Body
  • 5.1.5. Flow Past a Circular Cylinder
  • 5.2. Steady Axisymmetric Flows
  • 5.2.1. Circular Pipe Flow (Hagen
  • Poiseuille Flow)
  • 5.2.2. Flow Between Two Concentric Rotating Cylinders
  • 5.2.3. Axisymmetric Stagnation
  • Point Flow
  • 5.2.4. Flow at a Rotating Disk
  • 5.2.5. Axisymmetric Free Jet
  • 5.3. Unsteady Plane Flows
  • 5.3.1. Flow at a Wall Suddenly Set into Motion (First Stokes Problem)
  • 5.3.2. Flow at an Oscillating Wall (Second Stokes Problem)
  • 5.3.3. Start
  • up of Couette Flow
  • 5.3.4. Unsteady Asymptotic Suction
  • 5.3.5. Unsteady Plane Stagnation
  • Point Flow
  • 5.3.6. Oscillating Channel Flow
  • 5.4. Unsteady Axisymmetric Flows
  • 5.4.1. Vortex Decay
  • 5.4.2. Unsteady Pipe Flow
  • 5.5. Summary
  • pt. II Laminar Boundary Layers
  • 6. Boundary
  • Layer Equations in Plane Flow; Plate Boundary Layer
  • 6.1. Setting up the Boundary
  • Layer Equations
  • 6.2. Wall Friction, Separation and Displacement
  • 6.3. Dimensional Representation of the Boundary
  • Layer Equations
  • 6.4. Friction Drag
  • 6.5. Plate Boundary Layer
  • 7. General Properties and Exact Solutions of the Boundary
  • Layer Equations for Plane Flows
  • 7.1. Compatibility Condition at the Wall
  • 7.2. Similar Solutions of the Boundary
  • Layer Equations
  • 7.2.1. Derivation of the Ordinary Differential Equation
  • A. Boundary Layers with Outer Flow
  • B. Boundary Layers Without Outer Flow
  • 7.2.2. Wedge Flows
  • 7.2.3. Flow in a Convergent Channel
  • 7.2.4. Mixing Layer
  • 7.2.5. Moving Plate
  • 7.2.6. Free Jet
  • 7.2.7. Wall Jet
  • 7.3. Coordinate Transformation
  • 7.3.1. Gortler Transformation
  • 7.3.2. v.
  • Mises Transformation
  • 7.3.3. Crocco Transformation
  • 7.4. Series Expansion of the Solutions
  • 7.4.1. Blasius Series
  • 7.4.2. Gortler Series
  • 7.5. Asymptotic Behaviour of Solutions Downstream
  • 7.5.1. Wake Behind Bodies
  • 7.5.2. Boundary Layer at a Moving Wall
  • 7.6. Integral Relations of the Boundary Layer
  • 7.6.1. Momentum
  • Integral Equation
  • 7.6.2. Energy
  • Integral Equation
  • 7.6.3. Moment
  • of
  • Momentum Integral Equations
  • 8. Approximate Methods for Solving the Boundary
  • Layer Equations for Steady Plane Flows
  • 8.1. Integral Methods
  • 8.2. Stratford's Separation Criterion
  • 8.3. Comparison of the Approximate Solutions with Exact Solutions
  • 8.3.1. Retarded Stagnation
  • Point Flow
  • 8.3.2. Divergent Channel (Diffuser)
  • 8.3.3. Circular Cylinder Flow
  • 8.3.4. Symmetric Flow past a Joukowsky Airfoil
  • 9. Thermal Boundary Layers without Coupling of the Velocity Field to the Temperature Field
  • 9.1. Boundary
  • Layer Equations for the Temperature Field
  • 9.2. Forced Convection for Constant Properties
  • 9.3. Effect of the Prandtl Number
  • 9.4. Similar Solutions of the Thermal Boundary Layer
  • 9.5. Integral Methods for Computing the Heat Transfer
  • 9.6. Effect of Dissipation; Distribution of the Adiabatic Wall Temperature
  • 10. Thermal Boundary Layers with Coupling of the Velocity Field to the Temperature Field
  • 10.1. Remark
  • 10.2. Boundary
  • Layer Equations
  • 10.3. Boundary Layers with Moderate Wall Heat Transfer (Without Gravitational Effects)
  • 10.3.1. Perturbation Calculation
  • 10.3.2. Property Ratio Method (Temperature Ratio Method)
  • 10.3.3. Reference Temperature Method
  • 10.4. Compressible Boundary Layers (Without Gravitational Effects)
  • 10.4.1. Physical Property Relations
  • 10.4.2. Simple Solutions of the Energy Equation
  • 10.4.3. Transformations of the Boundary
  • Layer Equations
  • 10.4.4. Similar Solutions
  • 10.4.5. Integral Methods
  • 10.4.6. Boundary Layers in Hypersonic Flows
  • 10.5. Natural Convection
  • 10.5.1. Boundary
  • Layer Equations
  • 10.5.2. Transformation of the Boundary
  • Layer Equations
  • 10.5.3. Limit of Large Prandtl Numbers (Tw = const)
  • 10.5.4. Similar Solutions
  • 10.5.5. General Solutions
  • 10.5.6. Variable Physical Properties
  • 10.5.7. Effect of Dissipation
  • 10.6. Indirect Natural Convection
  • 10.7. Mixed Convection
  • 11. Boundary
  • Layer Control (Suction/Blowing)
  • 11.1. Different Kinds of Boundary
  • Layer Control
  • 11.2. Continuous Suction and Blowing
  • 11.2.1. Fundamentals
  • 11.2.2. Massive Suction
  • 11.2.3. Massive Blowing
  • 11.2.4. Similar Solutions
  • 11.2.5. General Solutions
  • 1. Plate Flow with Uniform Suction or Blowing
  • 2. Airfoil
  • 11.2.6. Natural Convection with Blowing and Suction
  • 11.3. Binary Boundary Layers
  • 11.3.1. Overview
  • 11.3.2. Basic Equations
  • 11.3.3. Analogy Between Heat and Mass Transfer
  • 11.3.4. Similar Solutions
  • 12. Axisymmetric and Three
  • Dimensional Boundary Layers
  • 12.1. Axisymmetric Boundary Layers
  • 12.1.1. Boundary
  • Layer Equations
  • 12.1.2. Mangier Transformation
  • 12.1.3. Boundary Layers on Non
  • Rotating Bodies of Revolution
  • 12.1.4. Boundary Layers on Rotating Bodies of Revolution
  • 12.1.5. Free Jets and Wakes
  • 12.2. Three
  • Dimensional Boundary Layers
  • 12.2.1. Boundary
  • Layer Equations
  • 12.2.2. Boundary Layer at a Cylinder
  • 12.2.3. Boundary Layer at a Yawing Cylinder
  • 12.2.4. Three
  • Dimensional Stagnation Point
  • 12.2.5. Boundary Layers in Symmetry Planes
  • 12.2.6. General Configurations
  • 13. Unsteady Boundary Layers
  • 13.1. Fundamentals
  • 13.1.1. Remark
  • 13.1.2. Boundary
  • Layer Equations
  • 13.1.3. Similar and Semi
  • Similar Solutions
  • 13.1.4. Solutions for Small Times (High Frequencies)
  • 13.1.5. Separation of Unsteady Boundary Layers
  • 13.1.6. Integral Relations and Integral Methods
  • 13.2. Unsteady Motion of Bodies in a Fluid at Rest
  • 13.2.1. Start
  • Up Processes
  • 13.2.2. Oscillation of Bodies in a Fluid at Rest
  • 13.3. Unsteady Boundary Layers in a Steady Basic Flow
  • 13.3.1. Periodic Outer Flow
  • 13.3.2. Steady Flow with a Weak Periodic Perturbation
  • 13.3.3. Transition Between Two Slightly Different Steady Boundary Layers
  • 13.4. Compressible Unsteady Boundary Layers
  • 13.4.1. Remark
  • 13.4.2. Boundary Layer Behind a Moving Normal Shock Wave
  • 13.4.3. Flat Plate at Zero Incidence with Variable Free Stream Velocity and Wall Temperature
  • 14. Extensions to the Prandtl Boundary
  • Layer Theory
  • 14.1. Remark
  • 14.2. Higher Order Boundary
  • Layer Theory
  • 14.3. Hypersonic Interaction
  • 14.4. Triple
  • Deck Theory
  • 14.5. Marginal Separation
  • 14.6. Massive Separation
  • pt. III Laminar
  • Turbulent Transition
  • 15. Onset of Turbulence (Stability Theory)
  • 15.1. Some Experimental Results on the Laminar
  • Turbulent Transition
  • 15.1.1. Transition in the Pipe Flow
  • 15.1.2. Transition in the Boundary Layer
  • 15.2. Fundamentals of Stability Theory
  • 15.2.1. Remark
  • 15.2.2. Fundamentals of Primary Stability Theory
  • 15.2.3. Orr
  • Sommerfeld Equation
  • 15.2.4. Curve of Neutral Stability and the Indifference Reynolds Number
  • a. Plate Boundary Layer
  • b. Effect of Pressure Gradient
  • c. Effect of Suction
  • d. Effect of Wall Heat Transfer
  • e. Effect of Compressibility
  • f. Effect of Wall Roughness
  • g. Further Effects
  • 15.3. Instability of the Boundary Layer for Three
  • Dimensional Perturbations
  • 15.3.1. Remark
  • 15.3.2. Fundamentals of Secondary Stability Theory
  • 15.3.3. Boundary Layers at Curved Walls
  • 15.3.4. Boundary Layer at a Rotating Disk
  • 15.3.5. Three
  • Dimensional Boundary Layers.
  • Note continued: 15.4. Local Perturbations
  • pt. IV Turbulent Boundary Layers
  • 16. Fundamentals of Turbulent Flows
  • 16.1. Remark
  • 16.2. Mean Motion and Fluctuations
  • 16.3. Basic Equations for the Mean Motion of Turbulent Flows
  • 16.3.1. Continuity Equation
  • 16.3.2. Momentum Equations (Reynolds Equations)
  • 16.3.3. Equation for the Kinetic Energy of the Turbulent Fluctuations (k-Equation)
  • 16.3.4. Thermal Energy Equation
  • 16.4. Closure Problem
  • 16.5. Description of the Turbulent Fluctuations
  • 16.5.1. Correlations
  • 16.5.2. Spectra and Eddies
  • 16.5.3. Turbulence of the Outer Flow
  • 16.5.4. Edges of Turbulent Regions and Intermittence
  • 16.6. Boundary
  • Layer Equations for Plane Flows
  • 17. Internal Flows
  • 17.1. Couette Flow
  • 17.1.1. Two
  • Layer Structure of the Velocity Field and the Logarithmic Overlap Law
  • 17.1.2. Universal Laws of the Wall
  • 17.1.3. Friction Law
  • 17.1.4. Turbulence Models
  • 17.1.5. Heat Transfer
  • 17.2. Fully Developed Internal Flows (A = const)
  • 17.2.1. Channel Flow
  • 17.2.2. Couette
  • Poiseuille Flows
  • 17.2.3. Pipe Flow
  • 17.3. Slender
  • Channel Theory
  • 18. Turbulent Boundary Layers without Coupling of the Velocity Field to the Temperature Field
  • 18.1. Turbulence Models
  • 18.1.1. Remark
  • 18.1.2. Algebraic Turbulence Models
  • 18.1.3. Turbulent Energy Equation
  • 18.1.4. Two
  • Equation Models
  • 18.1.5. Reynolds Stress Models
  • 18.1.6. Heat Transfer Models
  • 18.1.7. Low
  • Reynolds
  • Number Models
  • 18.1.8. Large
  • Eddy Simulation and Direct Numerical Simulation
  • 18.2. Attached Boundary Layers
  • 18.2.1. Layered Structure
  • 18.2.2. Boundary
  • Layer Equations Using the Defect Formulation
  • 18.2.3. Friction Law and Characterisitic Quantities of the Boundary Layer
  • 18.2.4. Equilibrium Boundary Layers
  • 18.2.5. Boundary Layer on a Plate at Zero Incidence
  • 18.3. Boundary Layers with Separation
  • 18.3.1. Stratford Flow
  • 18.3.2. Quasi
  • Equilibrium Boundary Layers
  • 18.4. Computation of Boundary Layers Using Integral Methods
  • 18.4.1. Direct Method
  • 18.4.2. Inverse Method
  • 18.5. Computation of Boundary Layers Using Field Methods
  • 18.5.1. Attached Boundary Layers
  • 18.5.2. Boundary Layers with Separation
  • 18.5.3. Low
  • Reynolds
  • Number Turbulence Models
  • 18.5.4. Additional Effects
  • 18.6. Computation of Thermal Boundary Layers
  • 18.6.1. Fundamentals
  • 18.6.2. Computation of Thermal Boundary Layers Using Field Methods
  • 19. Turbulent Boundary Layers with Coupling of the Velocity Field to the Temperature Field
  • 19.1. Fundamental Equations
  • 19.1.1. Time Averaging for Variable Density
  • 19.1.2. Boundary
  • Layer Equations
  • 19.2. Compressible Turbulent Boundary Layers
  • 19.2.1. Temperature Field
  • 19.2.2. Overlap Law
  • 19.2.3. Skin
  • Friction Coefficient and Nusselt Number
  • 19.2.4. Integral Methods for Adiabatic Walls
  • 19.2.5. Field Methods
  • 19.2.6. Shock
  • Boundary
  • Layer Interaction
  • 19.3. Natural Convection
  • 20. Axisymmetric and Three
  • Dimensional Turbulent Boundary Layers
  • 20.1. Axisymmetric Boundary Layers
  • 20.1.1. Boundary
  • Layer Equations
  • 20.1.2. Boundary Layers without Body Rotation
  • 20.1.3. Boundary Layers with Body Rotation
  • 20.2. Three
  • Dimensional Boundary Layers
  • 20.2.1. Boundary
  • Layer Equations
  • 20.2.2. Computation Methods
  • 20.2.3. Examples
  • 21. Unsteady Turbulent Boundary Layers
  • 21.1. Averaging and Boundary
  • Layer Equations
  • 21.2. Computation Methods
  • 21.3. Examples
  • 22. Turbulent Free Shear Flows
  • 22.1. Remark
  • 22.2. Equations for Plane Free Shear Layers
  • 22.3. Plane Free Jet
  • 22.3.1. Global Balances
  • 22.3.2. Far Field
  • 22.3.3. Near Field
  • 22.3.4. Wall Effects
  • 22.4. Mixing Layer
  • 22.5. Plane Wake
  • 22.6. Axisymmetric Free Shear Flows
  • 22.6.1. Basic Equations
  • 22.6.2. Free Jet
  • 22.6.3. Wake
  • 22.7. Buoyant Jets
  • 22.7.1. Plane Buoyant Jet
  • 22.7.2. Axisymmetric Buoyant Jet
  • 22.8. Plane Wall Jet
  • pt. V Numerical Methods in Boundary
  • Layer Theory
  • 23. Numerical Integration of the Boundary
  • Layer Equations
  • 23.1. Laminar Boundary Layers
  • 23.1.1. Remark
  • 23.1.2. Note on Boundary
  • Layer Transformations
  • 23.1.3. Explicit and Implicit Discretisation
  • 23.1.4. Solution of the Implicit Difference Equations
  • 23.1.5. Integration of the Continuity Equation
  • 23.1.6. Boundary
  • Layer Edge and Wall Shear Stress
  • 23.1.7. Integration of the Transformed Boundary
  • Layer Equations Using the Box Scheme
  • 23.2. Turbulent Boundary Layers
  • 23.2.1. Method of Wall Functions
  • 23.2.2. Low
  • Reynolds
  • Number Turbulence Models
  • 23.3. Unsteady Boundary Layers
  • 23.4. Steady Three
  • Dimensional Boundary Layers.