Boundary-layer theory /
Saved in:
Author / Creator: | Schlichting, Hermann, 1907-1982, author. |
---|---|
Uniform title: | Grenzschicht-Theorie. English |
Edition: | Ninth edition. |
Imprint: | Berlin : Springer, [2016] ©2017 |
Description: | 1 online resource (xxviii, 805 pages) : illustrations |
Language: | English |
Subject: | |
Format: | E-Resource Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/11267660 |
Table of Contents:
- Machine generated contents note: pt. I Fundamentals of Viscous Flows
- 1. Some Features of Viscous Flows
- 1.1. Real and Ideal Fluids
- 1.2. Viscosity
- 1.3. Reynolds Number
- 1.4. Laminar and Turbulent Flows
- 1.5. Asymptotic Behaviour at Large Reynolds Numbers
- 1.6. Comparison of Measurements Using the Inviscid Limiting Solution
- 1.7. Summary
- 2. Fundamentals of Boundary
- Layer Theory
- 2.1. Boundary
- Layer Concept
- 2.2. Laminar Boundary Layer on a Flat Plate at Zero Incidence
- 2.3. Turbulent Boundary Layer on a Flat Plate at Zero Incidence
- 2.4. Fully Developed Turbulent Flow in a Pipe
- 2.5. Boundary Layer on an Airfoil
- 2.6. Separation of the Boundary Layer
- 2.7. Overview of the Following Material
- 3. Field Equations for Flows of Newtonian Fluids
- 3.1. Description of Flow Fields
- 3.2. Continuity Equation
- 3.3. Momentum Equation
- 3.4. General Stress State of Deformable Bodies
- 3.5. General State of Deformation of Flowing Fluids
- 3.6. Relation Between Stresses and Rate of Deformation
- 3.7. Stokes Hypothesis
- 3.8. Bulk Viscosity and Thermodynamic Pressure
- 3.9. Navier
- Stokes Equations
- 3.10. Energy Equation
- 3.11. Equations of Motion for Arbitrary Coordinate Systems (Summary)
- 3.12. Equations of Motion for Cartesian Coordinates in Index Notation
- 3.13. Equations of Motion in Different Coordinate Systems
- 4. General Properties of the Equations of Motion
- 4.1. Similarity Laws
- 4.2. Similarity Laws for Flow with Buoyancy Forces (Mixed Forced and Natural Convection)
- 4.3. Similarity Laws for Natural Convection
- 4.4. Vorticity Transport Equation
- 4.5. Limit of Very Small Reynolds Numbers
- 4.6. Limit of Very Large Reynolds Numbers
- 4.7. Mathematical Example of the Limit Re [→] [∞]
- 4.8. Non
- Uniqueness of Solutions of the Navier
- Stokes Equations
- 5. Exact Solutions of the Navier
- Stokes Equations
- 5.1. Steady Plane Flows
- 5.1.1. Couette
- Poiseuille Flows
- 5.1.2. Jeffery
- Hamel Flows (Fully Developed Nozzle and Diffuser Flows)
- 5.1.3. Plane Stagnation
- Point Flow
- 5.1.4. Flow Past a Parabolic Body
- 5.1.5. Flow Past a Circular Cylinder
- 5.2. Steady Axisymmetric Flows
- 5.2.1. Circular Pipe Flow (Hagen
- Poiseuille Flow)
- 5.2.2. Flow Between Two Concentric Rotating Cylinders
- 5.2.3. Axisymmetric Stagnation
- Point Flow
- 5.2.4. Flow at a Rotating Disk
- 5.2.5. Axisymmetric Free Jet
- 5.3. Unsteady Plane Flows
- 5.3.1. Flow at a Wall Suddenly Set into Motion (First Stokes Problem)
- 5.3.2. Flow at an Oscillating Wall (Second Stokes Problem)
- 5.3.3. Start
- up of Couette Flow
- 5.3.4. Unsteady Asymptotic Suction
- 5.3.5. Unsteady Plane Stagnation
- Point Flow
- 5.3.6. Oscillating Channel Flow
- 5.4. Unsteady Axisymmetric Flows
- 5.4.1. Vortex Decay
- 5.4.2. Unsteady Pipe Flow
- 5.5. Summary
- pt. II Laminar Boundary Layers
- 6. Boundary
- Layer Equations in Plane Flow; Plate Boundary Layer
- 6.1. Setting up the Boundary
- Layer Equations
- 6.2. Wall Friction, Separation and Displacement
- 6.3. Dimensional Representation of the Boundary
- Layer Equations
- 6.4. Friction Drag
- 6.5. Plate Boundary Layer
- 7. General Properties and Exact Solutions of the Boundary
- Layer Equations for Plane Flows
- 7.1. Compatibility Condition at the Wall
- 7.2. Similar Solutions of the Boundary
- Layer Equations
- 7.2.1. Derivation of the Ordinary Differential Equation
- A. Boundary Layers with Outer Flow
- B. Boundary Layers Without Outer Flow
- 7.2.2. Wedge Flows
- 7.2.3. Flow in a Convergent Channel
- 7.2.4. Mixing Layer
- 7.2.5. Moving Plate
- 7.2.6. Free Jet
- 7.2.7. Wall Jet
- 7.3. Coordinate Transformation
- 7.3.1. Gortler Transformation
- 7.3.2. v.
- Mises Transformation
- 7.3.3. Crocco Transformation
- 7.4. Series Expansion of the Solutions
- 7.4.1. Blasius Series
- 7.4.2. Gortler Series
- 7.5. Asymptotic Behaviour of Solutions Downstream
- 7.5.1. Wake Behind Bodies
- 7.5.2. Boundary Layer at a Moving Wall
- 7.6. Integral Relations of the Boundary Layer
- 7.6.1. Momentum
- Integral Equation
- 7.6.2. Energy
- Integral Equation
- 7.6.3. Moment
- of
- Momentum Integral Equations
- 8. Approximate Methods for Solving the Boundary
- Layer Equations for Steady Plane Flows
- 8.1. Integral Methods
- 8.2. Stratford's Separation Criterion
- 8.3. Comparison of the Approximate Solutions with Exact Solutions
- 8.3.1. Retarded Stagnation
- Point Flow
- 8.3.2. Divergent Channel (Diffuser)
- 8.3.3. Circular Cylinder Flow
- 8.3.4. Symmetric Flow past a Joukowsky Airfoil
- 9. Thermal Boundary Layers without Coupling of the Velocity Field to the Temperature Field
- 9.1. Boundary
- Layer Equations for the Temperature Field
- 9.2. Forced Convection for Constant Properties
- 9.3. Effect of the Prandtl Number
- 9.4. Similar Solutions of the Thermal Boundary Layer
- 9.5. Integral Methods for Computing the Heat Transfer
- 9.6. Effect of Dissipation; Distribution of the Adiabatic Wall Temperature
- 10. Thermal Boundary Layers with Coupling of the Velocity Field to the Temperature Field
- 10.1. Remark
- 10.2. Boundary
- Layer Equations
- 10.3. Boundary Layers with Moderate Wall Heat Transfer (Without Gravitational Effects)
- 10.3.1. Perturbation Calculation
- 10.3.2. Property Ratio Method (Temperature Ratio Method)
- 10.3.3. Reference Temperature Method
- 10.4. Compressible Boundary Layers (Without Gravitational Effects)
- 10.4.1. Physical Property Relations
- 10.4.2. Simple Solutions of the Energy Equation
- 10.4.3. Transformations of the Boundary
- Layer Equations
- 10.4.4. Similar Solutions
- 10.4.5. Integral Methods
- 10.4.6. Boundary Layers in Hypersonic Flows
- 10.5. Natural Convection
- 10.5.1. Boundary
- Layer Equations
- 10.5.2. Transformation of the Boundary
- Layer Equations
- 10.5.3. Limit of Large Prandtl Numbers (Tw = const)
- 10.5.4. Similar Solutions
- 10.5.5. General Solutions
- 10.5.6. Variable Physical Properties
- 10.5.7. Effect of Dissipation
- 10.6. Indirect Natural Convection
- 10.7. Mixed Convection
- 11. Boundary
- Layer Control (Suction/Blowing)
- 11.1. Different Kinds of Boundary
- Layer Control
- 11.2. Continuous Suction and Blowing
- 11.2.1. Fundamentals
- 11.2.2. Massive Suction
- 11.2.3. Massive Blowing
- 11.2.4. Similar Solutions
- 11.2.5. General Solutions
- 1. Plate Flow with Uniform Suction or Blowing
- 2. Airfoil
- 11.2.6. Natural Convection with Blowing and Suction
- 11.3. Binary Boundary Layers
- 11.3.1. Overview
- 11.3.2. Basic Equations
- 11.3.3. Analogy Between Heat and Mass Transfer
- 11.3.4. Similar Solutions
- 12. Axisymmetric and Three
- Dimensional Boundary Layers
- 12.1. Axisymmetric Boundary Layers
- 12.1.1. Boundary
- Layer Equations
- 12.1.2. Mangier Transformation
- 12.1.3. Boundary Layers on Non
- Rotating Bodies of Revolution
- 12.1.4. Boundary Layers on Rotating Bodies of Revolution
- 12.1.5. Free Jets and Wakes
- 12.2. Three
- Dimensional Boundary Layers
- 12.2.1. Boundary
- Layer Equations
- 12.2.2. Boundary Layer at a Cylinder
- 12.2.3. Boundary Layer at a Yawing Cylinder
- 12.2.4. Three
- Dimensional Stagnation Point
- 12.2.5. Boundary Layers in Symmetry Planes
- 12.2.6. General Configurations
- 13. Unsteady Boundary Layers
- 13.1. Fundamentals
- 13.1.1. Remark
- 13.1.2. Boundary
- Layer Equations
- 13.1.3. Similar and Semi
- Similar Solutions
- 13.1.4. Solutions for Small Times (High Frequencies)
- 13.1.5. Separation of Unsteady Boundary Layers
- 13.1.6. Integral Relations and Integral Methods
- 13.2. Unsteady Motion of Bodies in a Fluid at Rest
- 13.2.1. Start
- Up Processes
- 13.2.2. Oscillation of Bodies in a Fluid at Rest
- 13.3. Unsteady Boundary Layers in a Steady Basic Flow
- 13.3.1. Periodic Outer Flow
- 13.3.2. Steady Flow with a Weak Periodic Perturbation
- 13.3.3. Transition Between Two Slightly Different Steady Boundary Layers
- 13.4. Compressible Unsteady Boundary Layers
- 13.4.1. Remark
- 13.4.2. Boundary Layer Behind a Moving Normal Shock Wave
- 13.4.3. Flat Plate at Zero Incidence with Variable Free Stream Velocity and Wall Temperature
- 14. Extensions to the Prandtl Boundary
- Layer Theory
- 14.1. Remark
- 14.2. Higher Order Boundary
- Layer Theory
- 14.3. Hypersonic Interaction
- 14.4. Triple
- Deck Theory
- 14.5. Marginal Separation
- 14.6. Massive Separation
- pt. III Laminar
- Turbulent Transition
- 15. Onset of Turbulence (Stability Theory)
- 15.1. Some Experimental Results on the Laminar
- Turbulent Transition
- 15.1.1. Transition in the Pipe Flow
- 15.1.2. Transition in the Boundary Layer
- 15.2. Fundamentals of Stability Theory
- 15.2.1. Remark
- 15.2.2. Fundamentals of Primary Stability Theory
- 15.2.3. Orr
- Sommerfeld Equation
- 15.2.4. Curve of Neutral Stability and the Indifference Reynolds Number
- a. Plate Boundary Layer
- b. Effect of Pressure Gradient
- c. Effect of Suction
- d. Effect of Wall Heat Transfer
- e. Effect of Compressibility
- f. Effect of Wall Roughness
- g. Further Effects
- 15.3. Instability of the Boundary Layer for Three
- Dimensional Perturbations
- 15.3.1. Remark
- 15.3.2. Fundamentals of Secondary Stability Theory
- 15.3.3. Boundary Layers at Curved Walls
- 15.3.4. Boundary Layer at a Rotating Disk
- 15.3.5. Three
- Dimensional Boundary Layers.
- Note continued: 15.4. Local Perturbations
- pt. IV Turbulent Boundary Layers
- 16. Fundamentals of Turbulent Flows
- 16.1. Remark
- 16.2. Mean Motion and Fluctuations
- 16.3. Basic Equations for the Mean Motion of Turbulent Flows
- 16.3.1. Continuity Equation
- 16.3.2. Momentum Equations (Reynolds Equations)
- 16.3.3. Equation for the Kinetic Energy of the Turbulent Fluctuations (k-Equation)
- 16.3.4. Thermal Energy Equation
- 16.4. Closure Problem
- 16.5. Description of the Turbulent Fluctuations
- 16.5.1. Correlations
- 16.5.2. Spectra and Eddies
- 16.5.3. Turbulence of the Outer Flow
- 16.5.4. Edges of Turbulent Regions and Intermittence
- 16.6. Boundary
- Layer Equations for Plane Flows
- 17. Internal Flows
- 17.1. Couette Flow
- 17.1.1. Two
- Layer Structure of the Velocity Field and the Logarithmic Overlap Law
- 17.1.2. Universal Laws of the Wall
- 17.1.3. Friction Law
- 17.1.4. Turbulence Models
- 17.1.5. Heat Transfer
- 17.2. Fully Developed Internal Flows (A = const)
- 17.2.1. Channel Flow
- 17.2.2. Couette
- Poiseuille Flows
- 17.2.3. Pipe Flow
- 17.3. Slender
- Channel Theory
- 18. Turbulent Boundary Layers without Coupling of the Velocity Field to the Temperature Field
- 18.1. Turbulence Models
- 18.1.1. Remark
- 18.1.2. Algebraic Turbulence Models
- 18.1.3. Turbulent Energy Equation
- 18.1.4. Two
- Equation Models
- 18.1.5. Reynolds Stress Models
- 18.1.6. Heat Transfer Models
- 18.1.7. Low
- Reynolds
- Number Models
- 18.1.8. Large
- Eddy Simulation and Direct Numerical Simulation
- 18.2. Attached Boundary Layers
- 18.2.1. Layered Structure
- 18.2.2. Boundary
- Layer Equations Using the Defect Formulation
- 18.2.3. Friction Law and Characterisitic Quantities of the Boundary Layer
- 18.2.4. Equilibrium Boundary Layers
- 18.2.5. Boundary Layer on a Plate at Zero Incidence
- 18.3. Boundary Layers with Separation
- 18.3.1. Stratford Flow
- 18.3.2. Quasi
- Equilibrium Boundary Layers
- 18.4. Computation of Boundary Layers Using Integral Methods
- 18.4.1. Direct Method
- 18.4.2. Inverse Method
- 18.5. Computation of Boundary Layers Using Field Methods
- 18.5.1. Attached Boundary Layers
- 18.5.2. Boundary Layers with Separation
- 18.5.3. Low
- Reynolds
- Number Turbulence Models
- 18.5.4. Additional Effects
- 18.6. Computation of Thermal Boundary Layers
- 18.6.1. Fundamentals
- 18.6.2. Computation of Thermal Boundary Layers Using Field Methods
- 19. Turbulent Boundary Layers with Coupling of the Velocity Field to the Temperature Field
- 19.1. Fundamental Equations
- 19.1.1. Time Averaging for Variable Density
- 19.1.2. Boundary
- Layer Equations
- 19.2. Compressible Turbulent Boundary Layers
- 19.2.1. Temperature Field
- 19.2.2. Overlap Law
- 19.2.3. Skin
- Friction Coefficient and Nusselt Number
- 19.2.4. Integral Methods for Adiabatic Walls
- 19.2.5. Field Methods
- 19.2.6. Shock
- Boundary
- Layer Interaction
- 19.3. Natural Convection
- 20. Axisymmetric and Three
- Dimensional Turbulent Boundary Layers
- 20.1. Axisymmetric Boundary Layers
- 20.1.1. Boundary
- Layer Equations
- 20.1.2. Boundary Layers without Body Rotation
- 20.1.3. Boundary Layers with Body Rotation
- 20.2. Three
- Dimensional Boundary Layers
- 20.2.1. Boundary
- Layer Equations
- 20.2.2. Computation Methods
- 20.2.3. Examples
- 21. Unsteady Turbulent Boundary Layers
- 21.1. Averaging and Boundary
- Layer Equations
- 21.2. Computation Methods
- 21.3. Examples
- 22. Turbulent Free Shear Flows
- 22.1. Remark
- 22.2. Equations for Plane Free Shear Layers
- 22.3. Plane Free Jet
- 22.3.1. Global Balances
- 22.3.2. Far Field
- 22.3.3. Near Field
- 22.3.4. Wall Effects
- 22.4. Mixing Layer
- 22.5. Plane Wake
- 22.6. Axisymmetric Free Shear Flows
- 22.6.1. Basic Equations
- 22.6.2. Free Jet
- 22.6.3. Wake
- 22.7. Buoyant Jets
- 22.7.1. Plane Buoyant Jet
- 22.7.2. Axisymmetric Buoyant Jet
- 22.8. Plane Wall Jet
- pt. V Numerical Methods in Boundary
- Layer Theory
- 23. Numerical Integration of the Boundary
- Layer Equations
- 23.1. Laminar Boundary Layers
- 23.1.1. Remark
- 23.1.2. Note on Boundary
- Layer Transformations
- 23.1.3. Explicit and Implicit Discretisation
- 23.1.4. Solution of the Implicit Difference Equations
- 23.1.5. Integration of the Continuity Equation
- 23.1.6. Boundary
- Layer Edge and Wall Shear Stress
- 23.1.7. Integration of the Transformed Boundary
- Layer Equations Using the Box Scheme
- 23.2. Turbulent Boundary Layers
- 23.2.1. Method of Wall Functions
- 23.2.2. Low
- Reynolds
- Number Turbulence Models
- 23.3. Unsteady Boundary Layers
- 23.4. Steady Three
- Dimensional Boundary Layers.