The rise of big spatial data /

Saved in:
Bibliographic Details
Imprint:Cham, Switzerland : Springer, [2016]
©2017
Description:1 online resource (xxvii, 408 pages) : illustrations (some color)
Language:English
Series:Lecture notes in geoinformation and cartography, 1863-2246
Lecture notes in geoinformation and cartography.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11267809
Hidden Bibliographic Details
Other authors / contributors:Ivan, Igor, editor.
Singleton, Alex, editor.
Horák, Jiří, editor.
Inspektor, Tomáš, editor.
ISBN:9783319451237
3319451235
9783319451220
3319451227
Notes:Includes author index.
Includes bibliographical references.
Online resource, title from PDF title page (EBSCO, viewed October 23, 2016).
Summary:This edited volume gathers the proceedings of the Symposium GIS Ostrava 2016, the Rise of Big Spatial Data, held at the Technical University of Ostrava, Czech Republic, March 16-18, 2016. Combining theoretical papers and applications by authors from around the globe, it summarises the latest research findings in the area of big spatial data and key problems related to its utilisation. Welcome to dawn of the big data era: though it's in sight, it isn't quite here yet. Big spatial data is characterised by three main features: volume beyond the limit of usual geo-processing, velocity higher than that available using conventional processes, and variety, combining more diverse geodata sources than usual. The popular term denotes a situation in which one or more of these key properties reaches a point at which traditional methods for geodata collection, storage, processing, control, analysis, modelling, validation and visualisation fail to provide effective solutions. Entering the era of big spatial data calls for finding solutions that address all "small data" issues that soon create "big data" troubles. Resilience for big spatial data means solving the heterogeneity of spatial data sources (in topics, purpose, completeness, guarantee, licensing, coverage etc.), large volumes (from gigabytes to terabytes and more), undue complexity of geo-applications and systems (i.e. combination of standalone applications with web services, mobile platforms and sensor networks), neglected automation of geodata preparation (i.e. harmonisation, fusion), insufficient control of geodata collection and distribution processes (i.e. scarcity and poor quality of metadata and metadata systems), limited analytical tool capacity (i.e. domination of traditional causal-driven analysis), low visual system performance, inefficient knowledge-discovery techniques (for transformation of vast amounts of information into tiny and essential outputs) and much more. These trends are accelerating as sensors become more ubiquitous around the world.
Other form:Print version: Rise of Big Spatial Data. [Place of publication not identified] : Springer Verlag 2016 9783319451220

MARC

LEADER 00000cam a2200000Ii 4500
001 11267809
005 20210625184908.6
006 m o d
007 cr cnu---unuuu
008 161018t20162017sz a ob 001 0 eng d
015 |a GBB8N4187  |2 bnb 
016 7 |a 019154412  |2 Uk 
019 |a 960895386  |a 961007860  |a 961151477  |a 963359577  |a 965394325 
020 |a 9783319451237  |q (electronic bk.) 
020 |a 3319451235  |q (electronic bk.) 
020 |z 9783319451220 
020 |z 3319451227 
035 |a (OCoLC)960871729  |z (OCoLC)960895386  |z (OCoLC)961007860  |z (OCoLC)961151477  |z (OCoLC)963359577  |z (OCoLC)965394325 
035 9 |a (OCLCCM-CC)960871729 
037 |a com.springer.onix.9783319451237  |b Springer Nature 
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d GW5XE  |d IDEBK  |d YDX  |d EBLCP  |d N$T  |d OCLCF  |d UAB  |d IOG  |d MERER  |d ESU  |d Z5A  |d JG0  |d OCLCQ  |d JBG  |d IAD  |d ICN  |d OTZ  |d OCLCQ  |d U3W  |d CAUOI  |d KSU  |d UKMGB  |d OCLCO  |d OCLCQ  |d UKAHL  |d OCLCQ 
049 |a MAIN 
050 4 |a G70.212 
072 7 |a TEC  |x 036000  |2 bisacsh 
245 0 4 |a The rise of big spatial data /  |c Igor Ivan, Alex Singleton, Jiří Horák, Tomáš Inspektor, editors. 
264 1 |a Cham, Switzerland :  |b Springer,  |c [2016] 
264 4 |c ©2017 
300 |a 1 online resource (xxvii, 408 pages) :  |b illustrations (some color) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Lecture notes in geoinformation and cartography,  |x 1863-2246 
500 |a Includes author index. 
504 |a Includes bibliographical references. 
588 0 |a Online resource, title from PDF title page (EBSCO, viewed October 23, 2016). 
505 0 |a Application of WEB-GIS for Dissemination and 3D Visualization of Larege-Volume LIDAR Data.- Design and Evaluation of WEBGL-BASED Heat Map Visualization for Big Point Data.- Sparse Big Data Problem: A Case Study of Czech Graffiti Crimes.- Surveying of Open Pit Mine Using Low-Cost Aerial Photogrammetry.- Models for Relocation of Emergency Medical Stations.- The Possibilities of Big GIS Data Processing on the Desktop Computers.- Creating Large Size of Data with Apache Hadoop.- Processing LIDAR Data with Apache Hadoop.- Applicability of Support Vector Machines in Landslide Susceptibility Mapping.- Integration of Heterogeneous Data in the Support of the Forest Protection -- Structural Concept. 
520 |a This edited volume gathers the proceedings of the Symposium GIS Ostrava 2016, the Rise of Big Spatial Data, held at the Technical University of Ostrava, Czech Republic, March 16-18, 2016. Combining theoretical papers and applications by authors from around the globe, it summarises the latest research findings in the area of big spatial data and key problems related to its utilisation. Welcome to dawn of the big data era: though it's in sight, it isn't quite here yet. Big spatial data is characterised by three main features: volume beyond the limit of usual geo-processing, velocity higher than that available using conventional processes, and variety, combining more diverse geodata sources than usual. The popular term denotes a situation in which one or more of these key properties reaches a point at which traditional methods for geodata collection, storage, processing, control, analysis, modelling, validation and visualisation fail to provide effective solutions. Entering the era of big spatial data calls for finding solutions that address all "small data" issues that soon create "big data" troubles. Resilience for big spatial data means solving the heterogeneity of spatial data sources (in topics, purpose, completeness, guarantee, licensing, coverage etc.), large volumes (from gigabytes to terabytes and more), undue complexity of geo-applications and systems (i.e. combination of standalone applications with web services, mobile platforms and sensor networks), neglected automation of geodata preparation (i.e. harmonisation, fusion), insufficient control of geodata collection and distribution processes (i.e. scarcity and poor quality of metadata and metadata systems), limited analytical tool capacity (i.e. domination of traditional causal-driven analysis), low visual system performance, inefficient knowledge-discovery techniques (for transformation of vast amounts of information into tiny and essential outputs) and much more. These trends are accelerating as sensors become more ubiquitous around the world. 
650 0 |a Geographic information systems.  |0 http://id.loc.gov/authorities/subjects/sh90001880 
650 0 |a Big data.  |0 http://id.loc.gov/authorities/subjects/sh2012003227 
650 0 |a Geospatial data.  |0 http://id.loc.gov/authorities/subjects/sh2006006177 
650 7 |a Data mining.  |2 bicssc 
650 7 |a Geographical information systems (GIS) & remote sensing.  |2 bicssc 
650 7 |a TECHNOLOGY & ENGINEERING  |x Remote Sensing & Geographic Information Systems.  |2 bisacsh 
650 7 |a Big data.  |2 fast  |0 (OCoLC)fst01892965 
650 7 |a Geographic information systems.  |2 fast  |0 (OCoLC)fst00940423 
650 7 |a Geospatial data.  |2 fast  |0 (OCoLC)fst01741194 
655 0 |a Electronic books. 
655 4 |a Electronic books. 
700 1 |a Ivan, Igor,  |e editor.  |0 http://id.loc.gov/authorities/names/no2015027169 
700 1 |a Singleton, Alex,  |e editor.  |0 http://id.loc.gov/authorities/names/nb2011021571 
700 1 |a Horák, Jiří,  |e editor.  |0 http://id.loc.gov/authorities/names/n91053659 
700 1 |a Inspektor, Tomáš,  |e editor. 
776 0 8 |i Print version:  |t Rise of Big Spatial Data.  |d [Place of publication not identified] : Springer Verlag 2016  |z 9783319451220  |w (OCoLC)954429162 
830 0 |a Lecture notes in geoinformation and cartography.  |0 http://id.loc.gov/authorities/names/no2006133254 
903 |a HeVa 
929 |a oclccm 
999 f f |i 01800dc8-1bc7-56d4-b2a1-03dc618598bd  |s 618ca482-706b-5925-a6eb-6503ac521255 
928 |t Library of Congress classification  |a G70.212  |l Online  |c UC-FullText  |u https://link.springer.com/10.1007/978-3-319-45123-7  |z Springer Nature  |g ebooks  |i 12540938