Ordinary differential equations : basics and beyond /

Saved in:
Bibliographic Details
Author / Creator:Schaeffer, David G., author.
Imprint:New York, NY : Springer, 2016.
Description:1 online resource (xxx, 542 pages) : illustrations (some color)
Language:English
Series:Texts in applied mathematics, 0939-2475 ; volume 65
Texts in applied mathematics ; v. 65.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11269208
Hidden Bibliographic Details
Other authors / contributors:Cain, John W., author.
ISBN:9781493963898
1493963899
1493963872
9781493963874
Digital file characteristics:text file
PDF
Notes:Includes bibliographical references and index.
Online resource; title from PDF title page (SpringerLink, viewed November 21, 2016).
Summary:This book develops the theory of ordinary differential equations (ODEs), starting from an introductory level (with no prior experience in ODEs assumed) through to a graduate-level treatment of the qualitative theory, including bifurcation theory (but not chaos). While proofs are rigorous, the exposition is reader-friendly, aiming for the informality of face-to-face interactions. A unique feature of this book is the integration of rigorous theory with numerous applications of scientific interest. Besides providing motivation, this synthesis clarifies the theory and enhances scientific literacy. Other features include: (i) a wealth of exercises at various levels, along with commentary that explains why they matter; (ii) figures with consistent color conventions to identify nullclines, periodic orbits, stable and unstable manifolds; and (iii) a dedicated website with software templates, problem solutions, and other resources supporting the text. Given its many applications, the book may be used comfortably in science and engineering courses as well as in mathematics courses. Its level is accessible to upper-level undergraduates but still appropriate for graduate students. The thoughtful presentation, which anticipates many confusions of beginning students, makes the book suitable for a teaching environment that emphasizes self-directed, active learning (including the so-called inverted classroom).
Other form:Print version: 9781493963874
Standard no.:10.1007/978-1-4939-6389-8

MARC

LEADER 00000cam a2200000Ii 4500
001 11269208
005 20210625184641.7
006 m o d
007 cr cnu|||unuuu
008 161121s2016 nyua ob 001 0 eng d
015 |a GBB8M4864  |2 bnb 
016 7 |a 019140402  |2 Uk 
019 |a 965140978  |a 967710695  |a 967713666  |a 971085073  |a 1005824321  |a 1011990552  |a 1048157439  |a 1066629034  |a 1086452032  |a 1112535989 
020 |a 9781493963898  |q (electronic bk.) 
020 |a 1493963899  |q (electronic bk.) 
020 |a 1493963872 
020 |a 9781493963874 
024 7 |a 10.1007/978-1-4939-6389-8  |2 doi 
035 |a (OCoLC)963826353  |z (OCoLC)965140978  |z (OCoLC)967710695  |z (OCoLC)967713666  |z (OCoLC)971085073  |z (OCoLC)1005824321  |z (OCoLC)1011990552  |z (OCoLC)1048157439  |z (OCoLC)1066629034  |z (OCoLC)1086452032  |z (OCoLC)1112535989 
035 9 |a (OCLCCM-CC)963826353 
037 |a com.springer.onix.9781493963898  |b Springer Nature 
040 |a GW5XE  |b eng  |e rda  |e pn  |c GW5XE  |d YDX  |d NJR  |d UPM  |d STF  |d OCLCF  |d ESU  |d JG0  |d VT2  |d OCLCQ  |d IOG  |d OTZ  |d IAD  |d JBG  |d ICW  |d ILO  |d ICN  |d FIE  |d OCLCQ  |d U3W  |d REB  |d CAUOI  |d KSU  |d WYU  |d UKMGB  |d OCLCQ  |d ERF  |d AJS  |d N$T  |d OCLCO  |d OCLCQ 
049 |a MAIN 
050 4 |a QA371 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
100 1 |a Schaeffer, David G.,  |e author. 
245 1 0 |a Ordinary differential equations :  |b basics and beyond /  |c David G. Schaeffer, John W. Cain. 
264 1 |a New York, NY :  |b Springer,  |c 2016. 
300 |a 1 online resource (xxx, 542 pages) :  |b illustrations (some color) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
347 |b PDF 
490 1 |a Texts in applied mathematics,  |x 0939-2475 ;  |v volume 65 
504 |a Includes bibliographical references and index. 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed November 21, 2016). 
505 0 |a Introduction -- Linear Systems with Constant Coefficients -- Nonlinear Systems: Local Theory -- Nonlinear Systems: Global Theory -- Nondimensionalization and Scaling -- Trajectories Near Equilibria -- Oscillations in ODEs -- Bifurcation from Equilibria -- Examples of Global Bifurcation -- Epilogue -- Appendices. 
520 |a This book develops the theory of ordinary differential equations (ODEs), starting from an introductory level (with no prior experience in ODEs assumed) through to a graduate-level treatment of the qualitative theory, including bifurcation theory (but not chaos). While proofs are rigorous, the exposition is reader-friendly, aiming for the informality of face-to-face interactions. A unique feature of this book is the integration of rigorous theory with numerous applications of scientific interest. Besides providing motivation, this synthesis clarifies the theory and enhances scientific literacy. Other features include: (i) a wealth of exercises at various levels, along with commentary that explains why they matter; (ii) figures with consistent color conventions to identify nullclines, periodic orbits, stable and unstable manifolds; and (iii) a dedicated website with software templates, problem solutions, and other resources supporting the text. Given its many applications, the book may be used comfortably in science and engineering courses as well as in mathematics courses. Its level is accessible to upper-level undergraduates but still appropriate for graduate students. The thoughtful presentation, which anticipates many confusions of beginning students, makes the book suitable for a teaching environment that emphasizes self-directed, active learning (including the so-called inverted classroom). 
650 0 |a Differential equations.  |0 http://id.loc.gov/authorities/subjects/sh85037890 
650 7 |a Mathematical physics.  |2 bicssc 
650 7 |a Nonlinear science.  |2 bicssc 
650 7 |a Differential calculus & equations.  |2 bicssc 
650 7 |a Science  |x Mathematical Physics.  |2 bisacsh 
650 7 |a Mathematics  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Mathematics  |x Differential Equations.  |2 bisacsh 
650 7 |a Differential equations.  |2 fast  |0 (OCoLC)fst00893446 
655 4 |a Electronic books. 
700 1 |a Cain, John W.,  |e author. 
776 0 8 |i Print version:  |z 9781493963874 
830 0 |a Texts in applied mathematics ;  |v v. 65.  |x 0939-2475  |0 http://id.loc.gov/authorities/names/n86729581 
903 |a HeVa 
929 |a oclccm 
999 f f |i 326ce118-8c9e-5188-a70e-2414421b911e  |s 9ad4411c-4036-5b6a-8b15-a13dd32366ad 
928 |t Library of Congress classification  |a QA371  |l Online  |c UC-FullText  |u https://link.springer.com/10.1007/978-1-4939-6389-8  |z Springer Nature  |g ebooks  |i 12542081