Brauer groups and obstruction problems : Moduli spaces and arithmetic /
Saved in:
Imprint: | Cham, Switzerland : Birkhäuser, 2017. |
---|---|
Description: | 1 online resource (ix, 247 pages) |
Language: | English |
Series: | Progress in mathematics, 0743-1643 ; volume 320 Progress in mathematics (Boston, Mass.) ; v. 320. |
Subject: | |
Format: | E-Resource Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/11272254 |
MARC
LEADER | 00000cam a2200000Ii 4500 | ||
---|---|---|---|
001 | 11272254 | ||
005 | 20210625184921.6 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 170309s2017 sz ob 000 0 eng d | ||
019 | |a 974746916 |a 981978617 |a 982018269 |a 985336498 |a 1005830203 |a 1008953643 |a 1012398745 | ||
020 | |a 9783319468525 |q (electronic bk.) | ||
020 | |a 3319468529 |q (electronic bk.) | ||
020 | |z 9783319468518 |q (print) | ||
020 | |z 3319468510 | ||
024 | 7 | |a 10.1007/978-3-319-46852-5 |2 doi | |
035 | |a (OCoLC)974894041 |z (OCoLC)974746916 |z (OCoLC)981978617 |z (OCoLC)982018269 |z (OCoLC)985336498 |z (OCoLC)1005830203 |z (OCoLC)1008953643 |z (OCoLC)1012398745 | ||
035 | 9 | |a (OCLCCM-CC)974894041 | |
040 | |a GW5XE |b eng |e rda |e pn |c GW5XE |d YDX |d IDEBK |d OCLCF |d UAB |d NJR |d UPM |d IOG |d ESU |d JBG |d IAD |d ICW |d ICN |d FIE |d COO |d OTZ |d OCLCQ |d VT2 |d N$T |d JG0 |d U3W |d CAUOI |d OCLCQ |d KSU |d EZ9 |d WYU |d OCLCQ |d LEAUB |d UKAHL |d OCLCQ | ||
049 | |a MAIN | ||
050 | 4 | |a QA251.3 | |
072 | 7 | |a MAT |x 002040 |2 bisacsh | |
245 | 0 | 0 | |a Brauer groups and obstruction problems : |b Moduli spaces and arithmetic / |c Asher Auel, Brendan Hassett, Anthony Várilly-Alvarado, Bianca Viray, editors. |
264 | 1 | |a Cham, Switzerland : |b Birkhäuser, |c 2017. | |
300 | |a 1 online resource (ix, 247 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a text file |b PDF |2 rda | ||
490 | 1 | |a Progress in mathematics, |x 0743-1643 ; |v volume 320 | |
588 | 0 | |a Online resource; title from PDF title page (EBSCO, viewed November 27, 2017). | |
504 | |a Includes bibliographical references. | ||
505 | 0 | |a The Brauer group is not a derived invariant -- Twisted derived equivalences for affine schemes -- Rational points on twisted K3 surfaces and derived equivalences -- Universal unramified cohomology of cubic fourfolds containing a plane -- Universal spaces for unramified Galois cohomology -- Rational points on K3 surfaces and derived equivalence -- Unramified Brauer classes on cyclic covers of the projective plane -- Arithmetically Cohen-Macaulay bundles on cubic fourfolds containing a plane -- Brauer groups on K3 surfaces and arithmetic applications -- On a local-global principle for H3 of function fields of surfaces over a finite field -- Cohomology and the Brauer group of double covers. | |
520 | |a The contributions in this book explore various contexts in which the derived category of coherent sheaves on a variety determines some of its arithmetic. This setting provides new geometric tools for interpreting elements of the Brauer group. With a view towards future arithmetic applications, the book extends a number of powerful tools for analyzing rational points on elliptic curves, e.g., isogenies among curves, torsion points, modular curves, and the resulting descent techniques, as well as higher-dimensional varieties like K3 surfaces. Inspired by the rapid recent advances in our understanding of K3 surfaces, the book is intended to foster cross-pollination between the fields of complex algebraic geometry and number theory. Contributors: · Nicolas Addington · Benjamin Antieau · Kenneth Ascher · Asher Auel · Fedor Bogomolov · Jean-Louis Colliot-Thélène · Krishna Dasaratha · Brendan Hassett · Colin Ingalls · Martí Lahoz · Emanuele Macrì · Kelly McKinnie · Andrew Obus · Ekin Ozman · Raman Parimala · Alexander Perry · Alena Pirutka · Justin Sawon · Alexei N. Skorobogatov · Paolo Stellari · Sho Tanimoto · Hugh Thomas · Yuri Tschinkel · Anthony Várilly-Alvarado · Bianca Viray · Rong Zhou. | ||
650 | 0 | |a Brauer groups. |0 http://id.loc.gov/authorities/subjects/sh85016501 | |
650 | 0 | |a Moduli theory. |0 http://id.loc.gov/authorities/subjects/sh85086471 | |
650 | 7 | |a MATHEMATICS |x Algebra |x Intermediate. |2 bisacsh | |
650 | 7 | |a Brauer groups. |2 fast |0 (OCoLC)fst01429961 | |
650 | 7 | |a Moduli theory. |2 fast |0 (OCoLC)fst01024524 | |
655 | 4 | |a Electronic books. | |
700 | 1 | |a Auel, Asher, |e editor. |0 http://id.loc.gov/authorities/names/nb2017008125 | |
700 | 1 | |a Hassett, Brendan, |e editor. |0 http://id.loc.gov/authorities/names/nb2007011723 | |
700 | 1 | |a Várilly-Alvarado, Anthony, |e editor. | |
700 | 1 | |a Viray, Bianca, |e editor. | |
776 | 0 | 8 | |i Print version: |t Brauer groups and obstruction problems : Moduli spaces and arithmetic. |d [Cham, Switzerland] : Birkhäuser, ©2017 |h ix, 247 pages |k Progress in mathematics (Boston, Mass.) ; Volume 320 |x 2296-505X |z 9783319468518 |
830 | 0 | |a Progress in mathematics (Boston, Mass.) ; |v v. 320. |0 http://id.loc.gov/authorities/names/n42019868 | |
903 | |a HeVa | ||
929 | |a oclccm | ||
999 | f | f | |i 1284b902-a47a-51f6-8ad5-919e39cf3171 |s 2e449894-8407-595f-b33e-bd1134e66b19 |
928 | |t Library of Congress classification |a QA251.3 |l Online |c UC-FullText |u https://link.springer.com/10.1007/978-3-319-46852-5 |z Springer Nature |g ebooks |i 12544600 |