Brauer groups and obstruction problems : Moduli spaces and arithmetic /

Saved in:
Bibliographic Details
Imprint:Cham, Switzerland : Birkhäuser, 2017.
Description:1 online resource (ix, 247 pages)
Language:English
Series:Progress in mathematics, 0743-1643 ; volume 320
Progress in mathematics (Boston, Mass.) ; v. 320.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11272254
Hidden Bibliographic Details
Other authors / contributors:Auel, Asher, editor.
Hassett, Brendan, editor.
Várilly-Alvarado, Anthony, editor.
Viray, Bianca, editor.
ISBN:9783319468525
3319468529
9783319468518
3319468510
Digital file characteristics:text file PDF
Notes:Includes bibliographical references.
Online resource; title from PDF title page (EBSCO, viewed November 27, 2017).
Summary:The contributions in this book explore various contexts in which the derived category of coherent sheaves on a variety determines some of its arithmetic. This setting provides new geometric tools for interpreting elements of the Brauer group. With a view towards future arithmetic applications, the book extends a number of powerful tools for analyzing rational points on elliptic curves, e.g., isogenies among curves, torsion points, modular curves, and the resulting descent techniques, as well as higher-dimensional varieties like K3 surfaces. Inspired by the rapid recent advances in our understanding of K3 surfaces, the book is intended to foster cross-pollination between the fields of complex algebraic geometry and number theory. Contributors: · Nicolas Addington · Benjamin Antieau · Kenneth Ascher · Asher Auel · Fedor Bogomolov · Jean-Louis Colliot-Thélène · Krishna Dasaratha · Brendan Hassett · Colin Ingalls · Martí Lahoz · Emanuele Macrì · Kelly McKinnie · Andrew Obus · Ekin Ozman · Raman Parimala · Alexander Perry · Alena Pirutka · Justin Sawon · Alexei N. Skorobogatov · Paolo Stellari · Sho Tanimoto · Hugh Thomas · Yuri Tschinkel · Anthony Várilly-Alvarado · Bianca Viray · Rong Zhou.
Other form:Print version: Brauer groups and obstruction problems : Moduli spaces and arithmetic. [Cham, Switzerland] : Birkhäuser, ©2017 ix, 247 pages Progress in mathematics (Boston, Mass.) ; Volume 320 2296-505X 9783319468518
Standard no.:10.1007/978-3-319-46852-5

MARC

LEADER 00000cam a2200000Ii 4500
001 11272254
005 20210625184921.6
006 m o d
007 cr cnu---unuuu
008 170309s2017 sz ob 000 0 eng d
019 |a 974746916  |a 981978617  |a 982018269  |a 985336498  |a 1005830203  |a 1008953643  |a 1012398745 
020 |a 9783319468525  |q (electronic bk.) 
020 |a 3319468529  |q (electronic bk.) 
020 |z 9783319468518  |q (print) 
020 |z 3319468510 
024 7 |a 10.1007/978-3-319-46852-5  |2 doi 
035 |a (OCoLC)974894041  |z (OCoLC)974746916  |z (OCoLC)981978617  |z (OCoLC)982018269  |z (OCoLC)985336498  |z (OCoLC)1005830203  |z (OCoLC)1008953643  |z (OCoLC)1012398745 
035 9 |a (OCLCCM-CC)974894041 
040 |a GW5XE  |b eng  |e rda  |e pn  |c GW5XE  |d YDX  |d IDEBK  |d OCLCF  |d UAB  |d NJR  |d UPM  |d IOG  |d ESU  |d JBG  |d IAD  |d ICW  |d ICN  |d FIE  |d COO  |d OTZ  |d OCLCQ  |d VT2  |d N$T  |d JG0  |d U3W  |d CAUOI  |d OCLCQ  |d KSU  |d EZ9  |d WYU  |d OCLCQ  |d LEAUB  |d UKAHL  |d OCLCQ 
049 |a MAIN 
050 4 |a QA251.3 
072 7 |a MAT  |x 002040  |2 bisacsh 
245 0 0 |a Brauer groups and obstruction problems :  |b Moduli spaces and arithmetic /  |c Asher Auel, Brendan Hassett, Anthony Várilly-Alvarado, Bianca Viray, editors. 
264 1 |a Cham, Switzerland :  |b Birkhäuser,  |c 2017. 
300 |a 1 online resource (ix, 247 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in mathematics,  |x 0743-1643 ;  |v volume 320 
588 0 |a Online resource; title from PDF title page (EBSCO, viewed November 27, 2017). 
504 |a Includes bibliographical references. 
505 0 |a The Brauer group is not a derived invariant -- Twisted derived equivalences for affine schemes -- Rational points on twisted K3 surfaces and derived equivalences -- Universal unramified cohomology of cubic fourfolds containing a plane -- Universal spaces for unramified Galois cohomology -- Rational points on K3 surfaces and derived equivalence -- Unramified Brauer classes on cyclic covers of the projective plane -- Arithmetically Cohen-Macaulay bundles on cubic fourfolds containing a plane -- Brauer groups on K3 surfaces and arithmetic applications -- On a local-global principle for H3 of function fields of surfaces over a finite field -- Cohomology and the Brauer group of double covers. 
520 |a The contributions in this book explore various contexts in which the derived category of coherent sheaves on a variety determines some of its arithmetic. This setting provides new geometric tools for interpreting elements of the Brauer group. With a view towards future arithmetic applications, the book extends a number of powerful tools for analyzing rational points on elliptic curves, e.g., isogenies among curves, torsion points, modular curves, and the resulting descent techniques, as well as higher-dimensional varieties like K3 surfaces. Inspired by the rapid recent advances in our understanding of K3 surfaces, the book is intended to foster cross-pollination between the fields of complex algebraic geometry and number theory. Contributors: · Nicolas Addington · Benjamin Antieau · Kenneth Ascher · Asher Auel · Fedor Bogomolov · Jean-Louis Colliot-Thélène · Krishna Dasaratha · Brendan Hassett · Colin Ingalls · Martí Lahoz · Emanuele Macrì · Kelly McKinnie · Andrew Obus · Ekin Ozman · Raman Parimala · Alexander Perry · Alena Pirutka · Justin Sawon · Alexei N. Skorobogatov · Paolo Stellari · Sho Tanimoto · Hugh Thomas · Yuri Tschinkel · Anthony Várilly-Alvarado · Bianca Viray · Rong Zhou. 
650 0 |a Brauer groups.  |0 http://id.loc.gov/authorities/subjects/sh85016501 
650 0 |a Moduli theory.  |0 http://id.loc.gov/authorities/subjects/sh85086471 
650 7 |a MATHEMATICS  |x Algebra  |x Intermediate.  |2 bisacsh 
650 7 |a Brauer groups.  |2 fast  |0 (OCoLC)fst01429961 
650 7 |a Moduli theory.  |2 fast  |0 (OCoLC)fst01024524 
655 4 |a Electronic books. 
700 1 |a Auel, Asher,  |e editor.  |0 http://id.loc.gov/authorities/names/nb2017008125 
700 1 |a Hassett, Brendan,  |e editor.  |0 http://id.loc.gov/authorities/names/nb2007011723 
700 1 |a Várilly-Alvarado, Anthony,  |e editor. 
700 1 |a Viray, Bianca,  |e editor. 
776 0 8 |i Print version:  |t Brauer groups and obstruction problems : Moduli spaces and arithmetic.  |d [Cham, Switzerland] : Birkhäuser, ©2017  |h ix, 247 pages  |k Progress in mathematics (Boston, Mass.) ; Volume 320  |x 2296-505X  |z 9783319468518 
830 0 |a Progress in mathematics (Boston, Mass.) ;  |v v. 320.  |0 http://id.loc.gov/authorities/names/n42019868 
903 |a HeVa 
929 |a oclccm 
999 f f |i 1284b902-a47a-51f6-8ad5-919e39cf3171  |s 2e449894-8407-595f-b33e-bd1134e66b19 
928 |t Library of Congress classification  |a QA251.3  |l Online  |c UC-FullText  |u https://link.springer.com/10.1007/978-3-319-46852-5  |z Springer Nature  |g ebooks  |i 12544600