Elements of Hilbert spaces and operator theory /

Saved in:
Bibliographic Details
Author / Creator:Vasudeva, Harkrishan L., author.
Imprint:Singapore : Springer, 2017.
Description:1 online resource (xiii, 522 pages) : illustrations
Language:English
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11272826
Hidden Bibliographic Details
ISBN:9789811030208
9811030200
9789811030192
9811030197
Digital file characteristics:text file PDF
Notes:Includes bibliographical references and index.
Online resource; title from PDF title page (SpringerLink, viewed April 7, 2017).
Summary:The book presents an introduction to the geometry of Hilbert spaces and operator theory, targeting graduate and senior undergraduate students of mathematics. Major topics discussed in the book are inner product spaces, linear operators, spectral theory and special classes of operators, and Banach spaces. On vector spaces, the structure of inner product is imposed. After discussing geometry of Hilbert spaces, its applications to diverse branches of mathematics have been studied. Along the way are introduced orthogonal polynomials and their use in Fourier series and approximations. Spectrum of an operator is the key to the understanding of the operator. Properties of the spectrum of different classes of operators, such as normal operators, self-adjoint operators, unitaries, isometries and compact operators have been discussed. A large number of examples of operators, along with their spectrum and its splitting into point spectrum, continuous spectrum, residual spectrum, approximate point spectrum and compression spectrum, have been worked out. Spectral theorems for self-adjoint operators, and normal operators, follow the spectral theorem for compact normal operators. The book also discusses invariant subspaces with special attention to the Volterra operator and unbounded operators. In order to make the text as accessible as possible, motivation for the topics is introduced and a greater amount of explanation than is usually found in standard texts on the subject is provided. The abstract theory in the book is supplemented with concrete examples. It is expected that these features will help the reader get a good grasp of the topics discussed. Hints and solutions to all the problems are collected at the end of the book. Additional features are introduced in the book when it becomes imperative. This spirit is kept alive throughout the book.
Other form:Print version: Vasudeva, Harkrishan L. Elements of Hilbert spaces and operator theory. Singapore : Springer, 2017 9811030197 9789811030192
Standard no.:10.1007/978-981-10-3020-8

MARC

LEADER 00000cam a2200000Ii 4500
001 11272826
005 20210625184829.8
006 m o d
007 cr cnu|||unuuu
008 170329s2017 si a ob 001 0 eng d
015 |a GBB967122  |2 bnb 
016 7 |a 019336491  |2 Uk 
019 |a 980441097  |a 980736534  |a 981163910  |a 981635331  |a 981838182  |a 981975427  |a 982009411  |a 984871370  |a 1005803433  |a 1008949390  |a 1011851184  |a 1017890743  |a 1021269515  |a 1066534646  |a 1082100824  |a 1086471254  |a 1112591909  |a 1131908975 
020 |a 9789811030208  |q (electronic bk.) 
020 |a 9811030200  |q (electronic bk.) 
020 |z 9789811030192  |q (print) 
020 |z 9811030197 
024 7 |a 10.1007/978-981-10-3020-8  |2 doi 
035 |a (OCoLC)979992072  |z (OCoLC)980441097  |z (OCoLC)980736534  |z (OCoLC)981163910  |z (OCoLC)981635331  |z (OCoLC)981838182  |z (OCoLC)981975427  |z (OCoLC)982009411  |z (OCoLC)984871370  |z (OCoLC)1005803433  |z (OCoLC)1008949390  |z (OCoLC)1011851184  |z (OCoLC)1017890743  |z (OCoLC)1021269515  |z (OCoLC)1066534646  |z (OCoLC)1082100824  |z (OCoLC)1086471254  |z (OCoLC)1112591909  |z (OCoLC)1131908975 
035 9 |a (OCLCCM-CC)979992072 
037 |a com.springer.onix.9789811030208  |b Springer Nature 
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d GW5XE  |d YDX  |d EBLCP  |d N$T  |d NJR  |d OCLCF  |d IOG  |d COO  |d AZU  |d UPM  |d ESU  |d JBG  |d IAD  |d ICW  |d ICN  |d FIE  |d OTZ  |d OCLCQ  |d VT2  |d JG0  |d U3W  |d CAUOI  |d UAB  |d OCLCQ  |d KSU  |d WYU  |d MERER  |d OCLCQ  |d UKMGB  |d UKAHL  |d OCLCQ  |d ERF  |d OCLCQ  |d DKDLA  |d OCLCQ 
049 |a MAIN 
050 4 |a QA322.4 
072 7 |a MAT  |x 037000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
072 7 |a PBKF  |2 bicssc 
100 1 |a Vasudeva, Harkrishan L.,  |e author.  |0 http://id.loc.gov/authorities/names/n2004003334 
245 1 0 |a Elements of Hilbert spaces and operator theory /  |c Harkrishan Lal Vasudeva ; with contributions from Satish Shirali. 
264 1 |a Singapore :  |b Springer,  |c 2017. 
300 |a 1 online resource (xiii, 522 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
504 |a Includes bibliographical references and index. 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed April 7, 2017). 
505 0 |a Preface -- Preliminaries -- Inner Product Spaces -- Linear Operators -- Spectral Theory and Special Classes of Operators -- Banach Spaces -- Hints and Solutions -- References -- Index. 
520 |a The book presents an introduction to the geometry of Hilbert spaces and operator theory, targeting graduate and senior undergraduate students of mathematics. Major topics discussed in the book are inner product spaces, linear operators, spectral theory and special classes of operators, and Banach spaces. On vector spaces, the structure of inner product is imposed. After discussing geometry of Hilbert spaces, its applications to diverse branches of mathematics have been studied. Along the way are introduced orthogonal polynomials and their use in Fourier series and approximations. Spectrum of an operator is the key to the understanding of the operator. Properties of the spectrum of different classes of operators, such as normal operators, self-adjoint operators, unitaries, isometries and compact operators have been discussed. A large number of examples of operators, along with their spectrum and its splitting into point spectrum, continuous spectrum, residual spectrum, approximate point spectrum and compression spectrum, have been worked out. Spectral theorems for self-adjoint operators, and normal operators, follow the spectral theorem for compact normal operators. The book also discusses invariant subspaces with special attention to the Volterra operator and unbounded operators. In order to make the text as accessible as possible, motivation for the topics is introduced and a greater amount of explanation than is usually found in standard texts on the subject is provided. The abstract theory in the book is supplemented with concrete examples. It is expected that these features will help the reader get a good grasp of the topics discussed. Hints and solutions to all the problems are collected at the end of the book. Additional features are introduced in the book when it becomes imperative. This spirit is kept alive throughout the book. 
650 0 |a Hilbert space.  |0 http://id.loc.gov/authorities/subjects/sh85060803 
650 0 |a Operator theory.  |0 http://id.loc.gov/authorities/subjects/sh85095029 
650 7 |a MATHEMATICS  |x Functional Analysis.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Hilbert space.  |2 fast  |0 (OCoLC)fst00956785 
650 7 |a Operator theory.  |2 fast  |0 (OCoLC)fst01046419 
655 4 |a Electronic books. 
776 0 8 |i Print version:  |a Vasudeva, Harkrishan L.  |t Elements of Hilbert spaces and operator theory.  |d Singapore : Springer, 2017  |z 9811030197  |z 9789811030192  |w (OCoLC)959593280 
903 |a HeVa 
929 |a oclccm 
999 f f |i 034a8cc0-68cc-5071-a0d8-3bbd556bf66f  |s aef11d27-10d7-5bb8-b660-7cd4d22a9f70 
928 |t Library of Congress classification  |a QA322.4  |l Online  |c UC-FullText  |u https://link.springer.com/10.1007/978-981-10-3020-8  |z Springer Nature  |g ebooks  |i 12545726