Guide to computational modelling for decision processes : theory, algorithms, techniques and applications /

Saved in:
Bibliographic Details
Imprint:Cham, Switzerland : Springer, [2017]
Description:1 online resource : illustrations
Language:English
Series:Simulation foundations, methods and applications
Simulation foundations, methods and applications.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11273339
Hidden Bibliographic Details
Other authors / contributors:Berry, Stuart, editor.
Lowndes, Val, editor.
Trovati, Marcello, editor.
ISBN:9783319554174
3319554174
9783319554167
3319554166
Digital file characteristics:text file PDF
Notes:Includes bibliographical references and index.
Online resource; title from PDF title page (EBSCO, viewed April 19, 2017).
Summary:This interdisciplinary reference and guide provides an introduction to modelling methodologies and models which form the starting point for deriving efficient and effective solution techniques, and presents a series of case studies that demonstrate how heuristic and analytical approaches may be used to solve large and complex problems. Topics and features: Introduces the key modelling methods and tools, including heuristic and mathematical programming-based models, and queuing theory and simulation techniques Demonstrates the use of heuristic methods to not only solve complex decision-making problems, but also to derive a simpler solution technique Presents case studies on a broad range of applications that make use of techniques from genetic algorithms and fuzzy logic, tabu search, and queuing theory Reviews examples incorporating system dynamics modelling, cellular automata and agent-based simulations, and the use of big data Contains appendices covering queuing theory, function optimization techniques, Boolean and fuzzy logic, and transport modelling Describes simulation for the evaluation of production planning and control methods, and a model for matching services with users in opportunistic network environments Researchers, practitioners and students in computer science, engineering and business studies will find this work to be an invaluable and in-depth introduction to the use of simulation techniques in the analysis of large and complex problems, in addition to providing an exhaustive description of the theoretical framework and applications being developed to address such problems.
Other form:Print version: Guide to computational modelling for decision processes. Cham, Switzerland : Springer, [2017] 3319554166 9783319554167
Standard no.:10.1007/978-3-319-55417-4

MARC

LEADER 00000cam a2200000Ii 4500
001 11273339
005 20210625184908.9
006 m o d
007 cr cnu|||unuuu
008 170417s2017 sz a ob 001 0 eng d
015 |a GBB8N7537  |2 bnb 
016 7 |a 019165019  |2 Uk 
019 |a 982908535  |a 983018067  |a 983270495  |a 983599789  |a 983910644  |a 984242421  |a 984579711  |a 985233638  |a 988379787  |a 1005759405  |a 1011849488  |a 1048144383  |a 1058857706  |a 1066443500  |a 1088954639  |a 1097101744  |a 1112555105 
020 |a 9783319554174  |q (electronic bk.) 
020 |a 3319554174  |q (electronic bk.) 
020 |z 9783319554167 
020 |z 3319554166 
024 7 |a 10.1007/978-3-319-55417-4  |2 doi 
035 |a (OCoLC)982487098  |z (OCoLC)982908535  |z (OCoLC)983018067  |z (OCoLC)983270495  |z (OCoLC)983599789  |z (OCoLC)983910644  |z (OCoLC)984242421  |z (OCoLC)984579711  |z (OCoLC)985233638  |z (OCoLC)988379787  |z (OCoLC)1005759405  |z (OCoLC)1011849488  |z (OCoLC)1048144383  |z (OCoLC)1058857706  |z (OCoLC)1066443500  |z (OCoLC)1088954639  |z (OCoLC)1097101744  |z (OCoLC)1112555105 
035 9 |a (OCLCCM-CC)982487098 
037 |a com.springer.onix.9783319554174  |b Springer Nature 
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d GW5XE  |d EBLCP  |d YDX  |d OCLCF  |d UAB  |d MERER  |d ESU  |d AZU  |d UPM  |d JG0  |d OCLCQ  |d COO  |d OTZ  |d OCLCQ  |d VT2  |d IOG  |d IDB  |d U3W  |d MERUC  |d CAUOI  |d KSU  |d AU@  |d WYU  |d OCLCQ  |d UKMGB  |d AUD  |d CEF  |d UKAHL  |d OCLCQ  |d ERF  |d OCLCQ 
049 |a MAIN 
050 4 |a QA76.9.C65 
072 7 |a SCI  |x 064000  |2 bisacsh 
072 7 |a TEC  |x 029000  |2 bisacsh 
072 7 |a UGK  |2 bicssc 
072 7 |a UYM  |2 thema 
245 0 0 |a Guide to computational modelling for decision processes :  |b theory, algorithms, techniques and applications /  |c Stuart Berry, Val Lowndes, Marcello Trovati, editors. 
264 1 |a Cham, Switzerland :  |b Springer,  |c [2017] 
300 |a 1 online resource :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Simulation foundations, methods and applications 
504 |a Includes bibliographical references and index. 
588 0 |a Online resource; title from PDF title page (EBSCO, viewed April 19, 2017). 
505 0 |a Part I: Introduction to Modelling and Model Evaluation -- Model Building -- Introduction to Cellular Automata in Simulation -- Introduction to Mathematical Programming -- Heuristic Techniques in Optimisation -- Introduction to the Use of Queueing Theory and Simulation -- Part II: Case Studies -- Case Studies: Using Heuristics -- Further Use of Heuristic Methods -- Air Traffic Controllers Planning: A Rostering Problem -- Solving Multiple Objective Problems: Modelling Diet Problems -- Fuzzy Scheduling Applied to Small Manufacturing Firms -- The Design and Optimisation of Surround Sound Decoders Using Heuristic Methods -- System Dynamics Case Studies -- Applying Queueing Theory to the Design of a Traffic Light Controller -- Cellular Automata and Agents in Simulations -- Three Big Data Case Studies -- Part III: Appendices -- Appendix A: Queueing Theory -- Appendix B: Function Optimisation Techniques: Genetic Algorithms and Tabu Searches -- Appendix C: What to Simulate to Evaluate Production Planning and Control Methods in Small Manufacturing Firms -- Appendix D: Defining Boolean and Fuzzy Logic Operators -- Appendix E: Assessing the Reinstated Waverley Line -- Appendix F: Matching Services with Users in Opportunistic Network Environments. 
520 |a This interdisciplinary reference and guide provides an introduction to modelling methodologies and models which form the starting point for deriving efficient and effective solution techniques, and presents a series of case studies that demonstrate how heuristic and analytical approaches may be used to solve large and complex problems. Topics and features: Introduces the key modelling methods and tools, including heuristic and mathematical programming-based models, and queuing theory and simulation techniques Demonstrates the use of heuristic methods to not only solve complex decision-making problems, but also to derive a simpler solution technique Presents case studies on a broad range of applications that make use of techniques from genetic algorithms and fuzzy logic, tabu search, and queuing theory Reviews examples incorporating system dynamics modelling, cellular automata and agent-based simulations, and the use of big data Contains appendices covering queuing theory, function optimization techniques, Boolean and fuzzy logic, and transport modelling Describes simulation for the evaluation of production planning and control methods, and a model for matching services with users in opportunistic network environments Researchers, practitioners and students in computer science, engineering and business studies will find this work to be an invaluable and in-depth introduction to the use of simulation techniques in the analysis of large and complex problems, in addition to providing an exhaustive description of the theoretical framework and applications being developed to address such problems. 
650 0 |a Computer algorithms.  |0 http://id.loc.gov/authorities/subjects/sh91000149 
650 0 |a Computer simulation.  |0 http://id.loc.gov/authorities/subjects/sh85029533 
650 0 |a Heuristic algorithms.  |0 http://id.loc.gov/authorities/subjects/sh2009010989 
650 0 |a Geometry, Analytic.  |0 http://id.loc.gov/authorities/subjects/sh85054141 
650 7 |a SCIENCE  |x System Theory.  |2 bisacsh 
650 7 |a TECHNOLOGY & ENGINEERING  |x Operations Research.  |2 bisacsh 
650 7 |a Algorithms & data structures.  |2 bicssc 
650 7 |a Operational research.  |2 bicssc 
650 7 |a Mathematical modelling.  |2 bicssc 
650 7 |a Maths for computer scientists.  |2 bicssc 
650 7 |a Computer modelling & simulation.  |2 bicssc 
650 7 |a Computer algorithms.  |2 fast  |0 (OCoLC)fst00872010 
650 7 |a Computer simulation.  |2 fast  |0 (OCoLC)fst00872518 
650 7 |a Geometry, Analytic.  |2 fast  |0 (OCoLC)fst00940905 
650 7 |a Heuristic algorithms.  |2 fast  |0 (OCoLC)fst01749726 
655 4 |a Electronic books. 
700 1 |a Berry, Stuart,  |e editor. 
700 1 |a Lowndes, Val,  |e editor. 
700 1 |a Trovati, Marcello,  |e editor. 
776 0 8 |i Print version:  |t Guide to computational modelling for decision processes.  |d Cham, Switzerland : Springer, [2017]  |z 3319554166  |z 9783319554167  |w (OCoLC)972773164 
830 0 |a Simulation foundations, methods and applications.  |0 http://id.loc.gov/authorities/names/no2013006083 
903 |a HeVa 
929 |a oclccm 
999 f f |i 0cb0d37b-ca64-5ebe-a7d1-103f7fcfe119  |s a4b4a782-ec22-5b85-8658-0a180ef47cfe 
928 |t Library of Congress classification  |a QA76.9.C65  |l Online  |c UC-FullText  |u https://link.springer.com/10.1007/978-3-319-55417-4  |z Springer Nature  |g ebooks  |i 12545109