Trends in social network analysis : information propagation, user behavior modeling, forecasting, and vulnerability assessment /

Saved in:
Bibliographic Details
Imprint:Cham, Switzerland : Springer, 2017.
Description:1 online resource (xiii, 255 pages) : illustrations (some color)
Language:English
Series:Lecture notes in social networks
Lecture notes in social networks.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11273551
Hidden Bibliographic Details
Other authors / contributors:Missaoui, R., editor.
Abdessalem, Talel, editor.
Latapy, Matthieu, editor.
ISBN:9783319534206
3319534203
9783319534190
331953419X
Digital file characteristics:text file PDF
Notes:Online resource; title from PDF title page (SpringerLink, viewed May 4, 2017).
Summary:The book collects contributions from experts worldwide addressing recent scholarship in social network analysis such as influence spread, link prediction, dynamic network biclustering, and delurking. It covers both new topics and new solutions to known problems. The contributions rely on established methods and techniques in graph theory, machine learning, stochastic modelling, user behavior analysis and natural language processing, just to name a few. This text provides an understanding of using such methods and techniques in order to manage practical problems and situations. Trends in Social Network Analysis: Information Propagation, User Behavior Modelling, Forecasting, and Vulnerability Assessment appeals to students, researchers, and professionals working in the field.
Other form:Print version: Trends in social network analysis. Cham, Switzerland : Springer, 2017 331953419X 9783319534190
Standard no.:10.1007/978-3-319-53420-6

MARC

LEADER 00000cam a2200000Ii 4500
001 11273551
005 20210625184647.4
006 m o d
007 cr cnu|||unuuu
008 170502s2017 sz a o 000 0 eng d
015 |a GBB901767  |2 bnb 
016 7 |a 019191561  |2 Uk 
019 |a 985646821  |a 985765248  |a 986063110  |a 986454554  |a 986745373  |a 986875213  |a 988384055  |a 1005790445  |a 1011850572  |a 1048168928  |a 1066637061  |a 1132233323  |a 1204058327 
020 |a 9783319534206  |q (electronic bk.) 
020 |a 3319534203  |q (electronic bk.) 
020 |z 9783319534190  |q (print) 
020 |z 331953419X 
024 7 |a 10.1007/978-3-319-53420-6  |2 doi 
035 |a (OCoLC)985105742  |z (OCoLC)985646821  |z (OCoLC)985765248  |z (OCoLC)986063110  |z (OCoLC)986454554  |z (OCoLC)986745373  |z (OCoLC)986875213  |z (OCoLC)988384055  |z (OCoLC)1005790445  |z (OCoLC)1011850572  |z (OCoLC)1048168928  |z (OCoLC)1066637061  |z (OCoLC)1132233323  |z (OCoLC)1204058327 
035 9 |a (OCLCCM-CC)985105742 
037 |a com.springer.onix.9783319534206  |b Springer Nature 
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d GW5XE  |d N$T  |d EBLCP  |d YDX  |d UAB  |d MERER  |d ESU  |d AZU  |d UPM  |d JG0  |d OCLCF  |d OCLCQ  |d COO  |d OTZ  |d OCLCQ  |d VT2  |d IOG  |d U3W  |d CAUOI  |d CEF  |d KSU  |d OCLCA  |d WYU  |d UWO  |d OCLCQ  |d UKMGB  |d UKAHL  |d OCLCQ  |d UBY  |d OCLCQ  |d DCT 
049 |a MAIN 
050 4 |a QA76.9.D343 
072 7 |a COM  |x 000000  |2 bisacsh 
072 7 |a UNF  |2 bicssc 
072 7 |a UYQE  |2 bicssc 
245 0 0 |a Trends in social network analysis :  |b information propagation, user behavior modeling, forecasting, and vulnerability assessment /  |c Rokia Missaoui, Talel Abdessalem, Matthieu Latapy, editors. 
264 1 |a Cham, Switzerland :  |b Springer,  |c 2017. 
300 |a 1 online resource (xiii, 255 pages) :  |b illustrations (some color) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture notes in social networks 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed May 4, 2017). 
505 0 |a Preface; Contents; Contributors; The Perceived Assortativity of Social Networks: Methodological Problems and Solutions; 1 Introduction; 2 Assortativity in Social and Other Networks; 2.1 Literature Search: Method; 2.2 Literature Search: Results; 2.3 Literature Search: Conclusions; 3 Methodological Pitfalls and False Assortativity; 3.1 Group-Based Networks and Assortativity; 3.2 Modeling Group-Based Sampling; 3.3 Filtering Networks; 4 Solutions; 4.1 Increased Sampling; 4.2 Use of Null Models; 4.3 Analysing Weighted Networks; 4.4 Using Diadic Over Group-Based Approaches; 4.5 Modern Technology. 
505 8 |a 4.6 Alternatives to the Newman Degree Correlation Measure5 Conclusions; References; A Parametric Study to Construct Time-Aware Social Profiles; 1 Introduction; 2 Related Works; 2.1 User Profile Building Process; 2.2 Incorporating Dynamic Interests in the Profile; 2.3 Social Network Evolution; 3 Proposition: Temporal Scores to Construct Social Profiles; 3.1 Notations; 3.2 *-0.9pc; 3.3 Community-Based Social Profile Construction Process with Temporal Score; 3.3.1 Temporal Score Calculation; 3.3.2 Temporal Score Integration; 4 Experiments; 4.1 Dataset Description. 
505 8 |a 4.2 Analysis of Common Keywords Between DBLP and Mendeley4.3 Case Study; 4.3.1 Ground Truth: Extraction of the Real User Profile from Mendeley; 4.3.2 Social Profiles Construction and Parametric Study; 4.4 Results; 4.4.1 All Users Results; 4.4.2 Results for Selected Users; 4.4.3 Different Time Decay Rate for the Relationships and the Information; 4.4.4 Discussion; 5 Conclusion and Future Works; Appendix; References; Sarcasm Analysis on Twitter Data Using Machine LearningApproaches; 1 Introduction; 2 Related Work; 2.1 Machine Learning-Based Approach; 2.2 Corpus-Based; 2.3 Lexical Features. 
505 8 |a 2.4 Pragmatic Feature2.5 Hyperbolic Feature; 3 Preliminaries; 3.1 System Model; 3.2 Part-of-Speech (POS) Tagging; 3.3 Parse Tree Generation; 4 Data Collection and Preprocessing; 4.1 Data Collection; 4.2 Preprocessing; 5 Proposed Scheme; 5.1 PBLGA; 5.2 LDC; 5.3 TCUF; 5.4 TCTDP; 6 Classifiers; 7 Results and Discussion; 7.1 Experimental Results; 8 Conclusion; References; The DEvOTION Algorithm for Delurking in Social Networks; 1 Introduction; 2 Targeted Influence Maximization; 3 Delurking-Oriented Targeted Influence Maximization; 3.1 Problem Statement; 3.2 Identifying and Characterizing Lurkers. 
505 8 |a 3.3 Choosing the Information Diffusion Model3.4 Properties of the Proposed Objective Function; 3.5 Modeling the Information Diffusion Graph; 3.6 The DEvOTION Algorithm; 4 Experimental Evaluation; 4.1 Evaluation Methodology; 4.2 Experimental Setting; 4.3 Data; 5 Results; 5.1 Impact of Parameters in DEvOTION; 5.2 Comparison with Baselines; 5.3 Comparison with Influence Maximization Algorithms; 5.4 Comparison with KB-TIM; 5.5 Seed Characteristics; 5.6 Discussion; 6 Conclusions and Future Work; References; Social Engineering Threat Assessment Using a Multi-Layered Graph-Based Model. 
520 |a The book collects contributions from experts worldwide addressing recent scholarship in social network analysis such as influence spread, link prediction, dynamic network biclustering, and delurking. It covers both new topics and new solutions to known problems. The contributions rely on established methods and techniques in graph theory, machine learning, stochastic modelling, user behavior analysis and natural language processing, just to name a few. This text provides an understanding of using such methods and techniques in order to manage practical problems and situations. Trends in Social Network Analysis: Information Propagation, User Behavior Modelling, Forecasting, and Vulnerability Assessment appeals to students, researchers, and professionals working in the field. 
650 0 |a Data mining.  |0 http://id.loc.gov/authorities/subjects/sh97002073 
650 0 |a Online social networks.  |0 http://id.loc.gov/authorities/subjects/sh2006006990 
650 7 |a Society & social sciences.  |2 bicssc 
650 7 |a Artificial intelligence.  |2 bicssc 
650 7 |a Databases.  |2 bicssc 
650 7 |a Mathematical physics.  |2 bicssc 
650 7 |a Data mining.  |2 bicssc 
650 7 |a COMPUTERS  |x General.  |2 bisacsh 
650 7 |a Data mining.  |2 fast  |0 (OCoLC)fst00887946 
650 7 |a Online social networks.  |2 fast  |0 (OCoLC)fst01741311 
655 4 |a Electronic books. 
700 1 |a Missaoui, R.,  |e editor.  |0 http://id.loc.gov/authorities/names/n95062821 
700 1 |a Abdessalem, Talel,  |e editor. 
700 1 |a Latapy, Matthieu,  |e editor. 
773 0 |t Springer eBooks 
776 0 8 |i Print version:  |t Trends in social network analysis.  |d Cham, Switzerland : Springer, 2017  |z 331953419X  |z 9783319534190  |w (OCoLC)968507637 
830 0 |a Lecture notes in social networks. 
903 |a HeVa 
929 |a oclccm 
999 f f |i 278cfb62-dbe1-5f7e-a1d9-4981c2b17920  |s 93f135e7-8e53-5223-a1e7-343ed7de28f3 
928 |t Library of Congress classification  |a QA76.9.D343  |l Online  |c UC-FullText  |u https://link.springer.com/10.1007/978-3-319-53420-6  |z Springer Nature  |g ebooks  |i 12545446