Partial differential equations : a unified Hilbert space approach /
Saved in:
Author / Creator: | Picard, R. H. (Rainer H.) |
---|---|
Imprint: | Berlin ; New York : De Gruyter, ©2011. |
Description: | 1 online resource (xviii, 469 pages) |
Language: | English |
Series: | De Gruyter expositions in mathematics ; 55 De Gruyter expositions in mathematics ; 55. |
Subject: | |
Format: | E-Resource Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/11277429 |
MARC
LEADER | 00000cam a2200000Ka 4500 | ||
---|---|---|---|
001 | 11277429 | ||
005 | 20210426224050.4 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 110921s2011 gw ob 001 0 eng d | ||
010 | |z 2011004423 | ||
016 | 7 | |a 015848897 |2 Uk | |
019 | |a 743693614 |a 747413854 |a 816881812 |a 961499457 |a 962611017 |a 1058067646 |a 1162379587 | ||
020 | |a 9783110250275 |q (electronic bk.) | ||
020 | |a 3110250276 |q (electronic bk.) | ||
020 | |z 9783110250268 | ||
020 | |z 3110250268 | ||
020 | |a 1283399938 | ||
020 | |a 9781283399937 | ||
020 | |a 9786613399939 | ||
020 | |a 6613399930 | ||
024 | 7 | |a 10.1515/9783110250275 |2 doi | |
035 | |a (OCoLC)753970239 |z (OCoLC)743693614 |z (OCoLC)747413854 |z (OCoLC)816881812 |z (OCoLC)961499457 |z (OCoLC)962611017 |z (OCoLC)1058067646 |z (OCoLC)1162379587 | ||
035 | 9 | |a (OCLCCM-CC)753970239 | |
040 | |a N$T |b eng |e pn |c N$T |d E7B |d OCLCQ |d CDX |d IDEBK |d OCLCQ |d DEBSZ |d OCLCQ |d YDXCP |d OCLCQ |d NLGGC |d DEBBG |d EBLCP |d MERUC |d CN3GA |d OCLCF |d OCLCQ |d S3O |d COO |d OCLCQ |d AZK |d LOA |d COCUF |d UIU |d AGLDB |d MOR |d PIFAG |d ZCU |d OCLCQ |d DEGRU |d U3W |d STF |d WRM |d OCLCQ |d VTS |d NRAMU |d ICG |d INT |d VT2 |d AU@ |d OCLCQ |d WYU |d OCLCQ |d TKN |d OCLCQ |d LEAUB |d DKC |d OCLCQ |d UKAHL |d OCLCQ |d VLY |d AJS | ||
049 | |a MAIN | ||
050 | 4 | |a QA322.4 |b .P53 2011eb | |
066 | |c (S | ||
072 | 7 | |a MAT |x 031000 |2 bisacsh | |
100 | 1 | |a Picard, R. H. |q (Rainer H.) |0 http://id.loc.gov/authorities/names/n88033139 | |
245 | 1 | 0 | |a Partial differential equations : |b a unified Hilbert space approach / |c Rainer Picard, Des McGhee. |
260 | |a Berlin ; |a New York : |b De Gruyter, |c ©2011. | ||
300 | |a 1 online resource (xviii, 469 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a De Gruyter expositions in mathematics ; |v 55 | |
504 | |a Includes bibliographical references and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |6 880-01 |a Preface; Contents; Nomenclature; 1 Elements of Hilbert Space Theory; 2 Sobolev Lattices; 3 Linear Partial Differential Equations with Constant Coefficients; 4 Linear Evolution Equations; 5 Some Evolution Equations of Mathematical Physics; 6 A "Royal Road" to Initial Boundary Value Problems; Conclusion; Bibliography; Index. | |
520 | |a This book presents a systematic approach to a solution theory for linear partial differential equations developed in a Hilbert space setting based on a Sobolev Lattice structure, a simple extension of the well established notion of a chain (or scale) of Hilbert spaces. Thefocus on a Hilbert space setting is a highly adaptable and suitable approach providing a more transparent framework for presenting the main issues in the development of a solution theory for partial differential equations. This global point of view is takenby focussing on the issues involved in determining the appropriate func. | ||
546 | |a In English. | ||
650 | 0 | |a Hilbert space. |0 http://id.loc.gov/authorities/subjects/sh85060803 | |
650 | 0 | |a Differential equations, Partial. |0 http://id.loc.gov/authorities/subjects/sh85037912 | |
650 | 4 | |a Differential equations, Partial. | |
650 | 4 | |a Equations. | |
650 | 4 | |a Hilbert space. | |
650 | 7 | |a MATHEMATICS |x Transformations. |2 bisacsh | |
650 | 7 | |a Differential equations, Partial. |2 fast |0 (OCoLC)fst00893484 | |
650 | 7 | |a Hilbert space. |2 fast |0 (OCoLC)fst00956785 | |
655 | 0 | |a Electronic books. | |
655 | 4 | |a Electronic books. | |
700 | 1 | |a McGhee, D. F. | |
776 | 0 | 8 | |i Print version: |a Picard, R.H. (Rainer H.). |t Partial differential equations. |d Berlin ; New York : De Gruyter, ©2011 |z 9783110250268 |w (DLC) 2011004423 |w (OCoLC)705567992 |
830 | 0 | |a De Gruyter expositions in mathematics ; |v 55. |0 http://id.loc.gov/authorities/names/n90653843 | |
880 | 0 | |6 505-01/(S |a Machine generated contents note: 1. Elements of Hilbert Space Theory -- 1.1. Hilbert Space -- 1.2. Some Construction Principles of Hilbert Spaces -- 1.2.1. Direct Sums of Hilbert Spaces -- 1.2.2. Dual Spaces -- 1.2.3. Tensor Products of Hilbert Spaces -- 2. Sobolev Lattices -- 2.1. Sobolev Chains -- 2.2. Sobolev Lattices -- 2.3. Sobolev Lattices from Tensor Products of Sobolev Chains -- 3. Linear Partial Differential Equations with Constant Coefficients -- 3.1. Partial Differential Equations in H-[∞]([∂]ν + e) -- 3.1.1. First Steps Towards a Solution Theory -- 3.1.2. The Tarski-Seidenberg Theorem and some Consequences -- 3.1.3. Regularity Loss (0 ...,0) -- 3.1.4. Classification of Partial Differential Equations -- 3.1.5. The Classical Classification of Partial Differential Equations -- 3.1.6. Elliptic, Parabolic, Hyperbolic-- 3.1.7. Evolutionary Expressions in Canonical Form -- 3.1.8. Functions of [∂]ν and Convolutions -- 3.1.9. Systems and Scalar Equations. | |
903 | |a HeVa | ||
929 | |a oclccm | ||
999 | f | f | |i 4aa7906b-8716-5a40-8b62-ae3952779c7c |s 98a8d72f-0e81-5ac9-b4f7-14ca70086aa7 |
928 | |t Library of Congress classification |a QA322.4 .P53 2011eb |l Online |c UC-FullText |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=e000xna&AN=381760 |z eBooks on EBSCOhost |g ebooks |i 12355463 |