Partial differential equations : a unified Hilbert space approach /

Saved in:
Bibliographic Details
Author / Creator:Picard, R. H. (Rainer H.)
Imprint:Berlin ; New York : De Gruyter, ©2011.
Description:1 online resource (xviii, 469 pages)
Language:English
Series:De Gruyter expositions in mathematics ; 55
De Gruyter expositions in mathematics ; 55.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11277429
Hidden Bibliographic Details
Other authors / contributors:McGhee, D. F.
ISBN:9783110250275
3110250276
9783110250268
3110250268
1283399938
9781283399937
9786613399939
6613399930
Notes:Includes bibliographical references and index.
In English.
Print version record.
Summary:This book presents a systematic approach to a solution theory for linear partial differential equations developed in a Hilbert space setting based on a Sobolev Lattice structure, a simple extension of the well established notion of a chain (or scale) of Hilbert spaces. Thefocus on a Hilbert space setting is a highly adaptable and suitable approach providing a more transparent framework for presenting the main issues in the development of a solution theory for partial differential equations. This global point of view is takenby focussing on the issues involved in determining the appropriate func.
Other form:Print version: Picard, R.H. (Rainer H.). Partial differential equations. Berlin ; New York : De Gruyter, ©2011 9783110250268
Standard no.:10.1515/9783110250275

MARC

LEADER 00000cam a2200000Ka 4500
001 11277429
005 20210426224050.4
006 m o d
007 cr cnu---unuuu
008 110921s2011 gw ob 001 0 eng d
010 |z  2011004423 
016 7 |a 015848897  |2 Uk 
019 |a 743693614  |a 747413854  |a 816881812  |a 961499457  |a 962611017  |a 1058067646  |a 1162379587 
020 |a 9783110250275  |q (electronic bk.) 
020 |a 3110250276  |q (electronic bk.) 
020 |z 9783110250268 
020 |z 3110250268 
020 |a 1283399938 
020 |a 9781283399937 
020 |a 9786613399939 
020 |a 6613399930 
024 7 |a 10.1515/9783110250275  |2 doi 
035 |a (OCoLC)753970239  |z (OCoLC)743693614  |z (OCoLC)747413854  |z (OCoLC)816881812  |z (OCoLC)961499457  |z (OCoLC)962611017  |z (OCoLC)1058067646  |z (OCoLC)1162379587 
035 9 |a (OCLCCM-CC)753970239 
040 |a N$T  |b eng  |e pn  |c N$T  |d E7B  |d OCLCQ  |d CDX  |d IDEBK  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d YDXCP  |d OCLCQ  |d NLGGC  |d DEBBG  |d EBLCP  |d MERUC  |d CN3GA  |d OCLCF  |d OCLCQ  |d S3O  |d COO  |d OCLCQ  |d AZK  |d LOA  |d COCUF  |d UIU  |d AGLDB  |d MOR  |d PIFAG  |d ZCU  |d OCLCQ  |d DEGRU  |d U3W  |d STF  |d WRM  |d OCLCQ  |d VTS  |d NRAMU  |d ICG  |d INT  |d VT2  |d AU@  |d OCLCQ  |d WYU  |d OCLCQ  |d TKN  |d OCLCQ  |d LEAUB  |d DKC  |d OCLCQ  |d UKAHL  |d OCLCQ  |d VLY  |d AJS 
049 |a MAIN 
050 4 |a QA322.4  |b .P53 2011eb 
066 |c (S 
072 7 |a MAT  |x 031000  |2 bisacsh 
100 1 |a Picard, R. H.  |q (Rainer H.)  |0 http://id.loc.gov/authorities/names/n88033139 
245 1 0 |a Partial differential equations :  |b a unified Hilbert space approach /  |c Rainer Picard, Des McGhee. 
260 |a Berlin ;  |a New York :  |b De Gruyter,  |c ©2011. 
300 |a 1 online resource (xviii, 469 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a De Gruyter expositions in mathematics ;  |v 55 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
505 0 |6 880-01  |a Preface; Contents; Nomenclature; 1 Elements of Hilbert Space Theory; 2 Sobolev Lattices; 3 Linear Partial Differential Equations with Constant Coefficients; 4 Linear Evolution Equations; 5 Some Evolution Equations of Mathematical Physics; 6 A "Royal Road" to Initial Boundary Value Problems; Conclusion; Bibliography; Index. 
520 |a This book presents a systematic approach to a solution theory for linear partial differential equations developed in a Hilbert space setting based on a Sobolev Lattice structure, a simple extension of the well established notion of a chain (or scale) of Hilbert spaces. Thefocus on a Hilbert space setting is a highly adaptable and suitable approach providing a more transparent framework for presenting the main issues in the development of a solution theory for partial differential equations. This global point of view is takenby focussing on the issues involved in determining the appropriate func. 
546 |a In English. 
650 0 |a Hilbert space.  |0 http://id.loc.gov/authorities/subjects/sh85060803 
650 0 |a Differential equations, Partial.  |0 http://id.loc.gov/authorities/subjects/sh85037912 
650 4 |a Differential equations, Partial. 
650 4 |a Equations. 
650 4 |a Hilbert space. 
650 7 |a MATHEMATICS  |x Transformations.  |2 bisacsh 
650 7 |a Differential equations, Partial.  |2 fast  |0 (OCoLC)fst00893484 
650 7 |a Hilbert space.  |2 fast  |0 (OCoLC)fst00956785 
655 0 |a Electronic books. 
655 4 |a Electronic books. 
700 1 |a McGhee, D. F. 
776 0 8 |i Print version:  |a Picard, R.H. (Rainer H.).  |t Partial differential equations.  |d Berlin ; New York : De Gruyter, ©2011  |z 9783110250268  |w (DLC) 2011004423  |w (OCoLC)705567992 
830 0 |a De Gruyter expositions in mathematics ;  |v 55.  |0 http://id.loc.gov/authorities/names/n90653843 
880 0 |6 505-01/(S  |a Machine generated contents note: 1. Elements of Hilbert Space Theory -- 1.1. Hilbert Space -- 1.2. Some Construction Principles of Hilbert Spaces -- 1.2.1. Direct Sums of Hilbert Spaces -- 1.2.2. Dual Spaces -- 1.2.3. Tensor Products of Hilbert Spaces -- 2. Sobolev Lattices -- 2.1. Sobolev Chains -- 2.2. Sobolev Lattices -- 2.3. Sobolev Lattices from Tensor Products of Sobolev Chains -- 3. Linear Partial Differential Equations with Constant Coefficients -- 3.1. Partial Differential Equations in H-[∞]([∂]ν + e) -- 3.1.1. First Steps Towards a Solution Theory -- 3.1.2. The Tarski-Seidenberg Theorem and some Consequences -- 3.1.3. Regularity Loss (0 ...,0) -- 3.1.4. Classification of Partial Differential Equations -- 3.1.5. The Classical Classification of Partial Differential Equations -- 3.1.6. Elliptic, Parabolic, Hyperbolic-- 3.1.7. Evolutionary Expressions in Canonical Form -- 3.1.8. Functions of [∂]ν and Convolutions -- 3.1.9. Systems and Scalar Equations. 
903 |a HeVa 
929 |a oclccm 
999 f f |i 4aa7906b-8716-5a40-8b62-ae3952779c7c  |s 98a8d72f-0e81-5ac9-b4f7-14ca70086aa7 
928 |t Library of Congress classification  |a QA322.4 .P53 2011eb  |l Online  |c UC-FullText  |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=e000xna&AN=381760  |z eBooks on EBSCOhost  |g ebooks  |i 12355463