An invitation to q-series : from Jacobi's triple product identity to Ramanujan's "most beautiful identity" /

Saved in:
Bibliographic Details
Author / Creator:Chan, Hei-Chi.
Imprint:Singapore : World Scientific Pub Co., ©2011.
Description:1 online resource (ix, 226 pages) : illustrations
Language:English
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11279816
Hidden Bibliographic Details
ISBN:9789814343855
9814343854
1283235056
9781283235051
9789814343848
9814343846
Notes:Includes appendices, bibliographical references (pages 213-223), and index.
Print version record.
Summary:The aim of these lecture notes is to provide a self-contained exposition of several fascinating formulas discovered by Srinivasa Ramanujan. Two central results in these notes are: (1) the evaluation of the Rogers-Ramanujan continued fraction -- a result that convinced G H Hardy that Ramanujan was a "mathematician of the highest class", and (2) what G.H. Hardy called Ramanujan's "Most Beautiful Identity". This book covers a range of related results, such as several proofs of the famous Rogers-Ramanujan identities and a detailed account of Ramanujan's congruences. It also covers a range of techniques in q-series.
Other form:Print version: Chan, Hei-Chi. Invitation to q-series. Singapore : World Scientific Pub Co., ©2011 9789814343848

MARC

LEADER 00000cam a2200000Ka 4500
001 11279816
006 m o d
007 cr cnu---unuuu
008 111031s2011 si a ob 001 0 eng d
005 20240705200935.1
010 |a  2011292543 
019 |a 748215487  |a 816858971  |a 858228514  |a 1055392027  |a 1058191249  |a 1066416230  |a 1081228028  |a 1086430422  |a 1228556593 
020 |a 9789814343855  |q (electronic bk.) 
020 |a 9814343854  |q (electronic bk.) 
020 |a 1283235056 
020 |a 9781283235051 
020 |z 9789814343848 
020 |z 9814343846 
035 |a (OCoLC)759117210  |z (OCoLC)748215487  |z (OCoLC)816858971  |z (OCoLC)858228514  |z (OCoLC)1055392027  |z (OCoLC)1058191249  |z (OCoLC)1066416230  |z (OCoLC)1081228028  |z (OCoLC)1086430422  |z (OCoLC)1228556593 
035 9 |a (OCLCCM-CC)759117210 
040 |a N$T  |b eng  |e pn  |c N$T  |d E7B  |d IDEBK  |d YDXCP  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d NLGGC  |d CCO  |d EBLCP  |d OCLCQ  |d OCLCF  |d OCLCQ  |d LOA  |d AGLDB  |d MOR  |d PIFAG  |d ZCU  |d OCLCQ  |d MERUC  |d OCLCQ  |d U3W  |d STF  |d WRM  |d VTS  |d COCUF  |d NRAMU  |d ICG  |d INT  |d VT2  |d AU@  |d OCLCQ  |d WYU  |d OCLCQ  |d TKN  |d TXI  |d OCLCQ  |d DKC  |d OCLCQ  |d M8D  |d UKAHL  |d OCLCQ  |d LEAUB  |d AJS 
049 |a MAIN 
050 4 |a QA295  |b .C48 2011eb 
072 7 |a MAT  |x 016000  |2 bisacsh 
072 7 |a PBK  |2 bicssc 
100 1 |a Chan, Hei-Chi.  |0 http://id.loc.gov/authorities/names/no2011134072 
245 1 3 |a An invitation to q-series :  |b from Jacobi's triple product identity to Ramanujan's "most beautiful identity" /  |c Hei-Chi Chan. 
260 |a Singapore :  |b World Scientific Pub Co.,  |c ©2011. 
300 |a 1 online resource (ix, 226 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes appendices, bibliographical references (pages 213-223), and index. 
505 0 |a Introduction -- Part I: Jacobi's triple product identity ; First proof (via functional equation) -- Second proof (via Gaussian polynomials and the q-binomial theorem) -- Some applications -- The Boson-Fermion correspondence -- Macdonald's identities -- Part II: The Rogers-Ramanujan identitites ; First proof (via functional equation) -- Second proof (involving Gaussian polynomials and difference equations) -- Third proof (via Bailey's lemma) -- Excursus : mock theta functions -- Part III: The Rogers-Ramanujan continued fraction ; A list of theorems to be proven -- The evaluation of the Rogers-Ramanujan continued fraction -- A "difficult and deep" identity -- A remarkable identity from the Lost Notebook and cranks -- A differential equation for the Rogers-Ramanujan continued fraction -- Part IV: From the "most beautiful identity" to Ramanujan's congruences ; Proofs of the "most beautiful identity" -- Ramanujan's congruences I : analytical methods -- Ramanujan's congruences II : an introduction to t -cores -- Ramanujan's congruences III : more congruences -- Excursus : modular forms and more congruences for the partition function. 
520 |a The aim of these lecture notes is to provide a self-contained exposition of several fascinating formulas discovered by Srinivasa Ramanujan. Two central results in these notes are: (1) the evaluation of the Rogers-Ramanujan continued fraction -- a result that convinced G H Hardy that Ramanujan was a "mathematician of the highest class", and (2) what G.H. Hardy called Ramanujan's "Most Beautiful Identity". This book covers a range of related results, such as several proofs of the famous Rogers-Ramanujan identities and a detailed account of Ramanujan's congruences. It also covers a range of techniques in q-series. 
588 0 |a Print version record. 
650 0 |a q-series.  |0 http://id.loc.gov/authorities/subjects/sh86003971 
650 0 |a Jacobi identity.  |0 http://id.loc.gov/authorities/subjects/sh93005729 
650 0 |a Rogers-Ramanujan identities.  |0 http://id.loc.gov/authorities/subjects/sh2010011513 
650 7 |a MATHEMATICS  |x Infinity.  |2 bisacsh 
650 7 |a Jacobi identity.  |2 fast  |0 (OCoLC)fst00981026 
650 7 |a q-series.  |2 fast  |0 (OCoLC)fst01185036 
650 7 |a Rogers-Ramanujan identities.  |2 fast  |0 (OCoLC)fst01763050 
655 0 |a Electronic books. 
655 4 |a Electronic books. 
776 0 8 |i Print version:  |a Chan, Hei-Chi.  |t Invitation to q-series.  |d Singapore : World Scientific Pub Co., ©2011  |z 9789814343848  |w (DLC) 2011292543  |w (OCoLC)707965406 
903 |a HeVa 
929 |a oclccm 
999 f f |i baee0737-23a1-5466-ab1d-98bf158e9c06  |s 4f4ea2c0-e4b2-5ad6-ad43-d1c601de3e7f 
928 |t Library of Congress classification  |a QA295 .C48 2011eb  |l Online  |c UC-FullText  |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=e000xna&AN=389638  |z eBooks on EBSCOhost  |g ebooks  |i 12357859