The ergodic theory of lattice subgroups /

Saved in:
Bibliographic Details
Author / Creator:Gorodnik, Alexander, 1975-
Imprint:Princeton : Princeton University Press, 2010.
Description:1 online resource (xiii, 120 pages)
Language:English
Series:Annals of mathematics studies ; no. 172
Annals of mathematics studies ; no. 172.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11282549
Hidden Bibliographic Details
Other authors / contributors:Nevo, Amos, 1966-
ISBN:9781400831067
1400831067
1282303805
9781282303805
9780691141848
0691141843
9780691141855
0691141851
Notes:Includes bibliographical references (pages 117-120) and index.
In English.
Print version record.
Summary:The results established in this book constitute a new departure in ergodic theory and a significant expansion of its scope. Traditional ergodic theorems focused on amenable groups, and relied on the existence of an asymptotically invariant sequence in the group, the resulting maximal inequalities based on covering arguments, and the transference principle. Here, Alexander Gorodnik and Amos Nevo develop a systematic general approach to the proof of ergodic theorems for a large class of non-amenable locally compact groups and their lattice subgroups. Simple general conditions on the spectral the.
Other form:Print version: Gorodnik, Alexander, 1975- Ergodic theory of lattice subgroups. Princeton, N.J. : Princeton University Press, 2010 9780691141848
Standard no.:10.1515/9781400831067

MARC

LEADER 00000cam a2200000Ia 4500
001 11282549
005 20210426223750.1
006 m o d
007 cr mnu---unuuu
008 090202s2010 nju ob 001 0 eng d
010 |a  2009003729 
015 |a GBA984316  |2 bnb 
016 7 |a 015357083  |2 Uk 
019 |a 610005901  |a 646835199  |a 782110361  |a 816328399  |a 961545881  |a 962637842  |a 974575014  |a 974618923  |a 988410160  |a 991919211  |a 994900219  |a 1055342478  |a 1066648169  |a 1097084085  |a 1181902828  |a 1228605270 
020 |a 9781400831067  |q (electronic bk.) 
020 |a 1400831067  |q (electronic bk.) 
020 |a 1282303805 
020 |a 9781282303805 
020 |z 9780691141848  |q (hardcover) 
020 |z 0691141843  |q (hardcover) 
020 |z 9780691141855  |q (pbk.) 
020 |z 0691141851  |q (pbk.) 
024 7 |a 10.1515/9781400831067  |2 doi 
035 |a (OCoLC)507428541  |z (OCoLC)610005901  |z (OCoLC)646835199  |z (OCoLC)782110361  |z (OCoLC)816328399  |z (OCoLC)961545881  |z (OCoLC)962637842  |z (OCoLC)974575014  |z (OCoLC)974618923  |z (OCoLC)988410160  |z (OCoLC)991919211  |z (OCoLC)994900219  |z (OCoLC)1055342478  |z (OCoLC)1066648169  |z (OCoLC)1097084085  |z (OCoLC)1181902828  |z (OCoLC)1228605270 
035 9 |a (OCLCCM-CC)507428541 
037 |a 22573/cttw8tv  |b JSTOR 
040 |a CDX  |b eng  |e pn  |c CDX  |d N$T  |d OSU  |d EBLCP  |d IDEBK  |d OCLCQ  |d MHW  |d OCLCQ  |d YDXCP  |d DEBSZ  |d JSTOR  |d OCLCF  |d OCLCQ  |d E7B  |d REDDC  |d DKDLA  |d OCLCQ  |d COO  |d AZK  |d UIU  |d AGLDB  |d MOR  |d PIFAG  |d ZCU  |d OTZ  |d WT2  |d OCLCQ  |d MERUC  |d OCLCQ  |d JBG  |d OCLCQ  |d IOG  |d EZ9  |d VTS  |d ICG  |d INT  |d VT2  |d OCLCQ  |d WYU  |d LVT  |d OCLCQ  |d STF  |d DKC  |d OCLCQ  |d K6U  |d OCLCQ  |d VLB  |d AU@  |d AJS  |d UWK 
049 |a MAIN 
050 4 |a QA313  |b .G67 2010eb 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
072 7 |a MAT014000  |2 bisacsh 
072 7 |a MAT022000  |2 bisacsh 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBKA, PBH  |2 bicssc 
084 |a SI 830  |2 rvk 
100 1 |a Gorodnik, Alexander,  |d 1975-  |0 http://id.loc.gov/authorities/names/n2009006491 
245 1 4 |a The ergodic theory of lattice subgroups /  |c Alexander Gorodnik, Amos Nevo. 
260 |a Princeton :  |b Princeton University Press,  |c 2010. 
300 |a 1 online resource (xiii, 120 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Annals of mathematics studies ;  |v no. 172 
504 |a Includes bibliographical references (pages 117-120) and index. 
505 0 |a Cover; Title; Copyright; Contents; Preface; Chapter 1. Main results: Semisimple Lie groups case; Chapter 2. Examples and applications; Chapter 3. Definitions, preliminaries, and basic tools; Chapter 4. Main results and an overview of the proofs; Chapter 5. Proof of ergodic theorems for S-algebraic groups; Chapter 6. Proof of ergodic theorems for lattice subgroups; Chapter 7. Volume estimates and volume regularity; Chapter 8. Comments and complements; Bibliography; Index. 
520 |a The results established in this book constitute a new departure in ergodic theory and a significant expansion of its scope. Traditional ergodic theorems focused on amenable groups, and relied on the existence of an asymptotically invariant sequence in the group, the resulting maximal inequalities based on covering arguments, and the transference principle. Here, Alexander Gorodnik and Amos Nevo develop a systematic general approach to the proof of ergodic theorems for a large class of non-amenable locally compact groups and their lattice subgroups. Simple general conditions on the spectral the. 
588 0 |a Print version record. 
546 |a In English. 
650 0 |a Ergodic theory.  |0 http://id.loc.gov/authorities/subjects/sh85044600 
650 0 |a Lie groups.  |0 http://id.loc.gov/authorities/subjects/sh85076786 
650 0 |a Lattice theory.  |0 http://id.loc.gov/authorities/subjects/sh85074991 
650 0 |a Harmonic analysis.  |0 http://id.loc.gov/authorities/subjects/sh85058939 
650 0 |a Dynamics.  |0 http://id.loc.gov/authorities/subjects/sh85040316 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Group Theory.  |2 bisacsh 
650 7 |a Dynamics.  |2 fast  |0 (OCoLC)fst00900295 
650 7 |a Ergodic theory.  |2 fast  |0 (OCoLC)fst00914656 
650 7 |a Harmonic analysis.  |2 fast  |0 (OCoLC)fst00951490 
650 7 |a Lattice theory.  |2 fast  |0 (OCoLC)fst00993426 
650 7 |a Lie groups.  |2 fast  |0 (OCoLC)fst00998135 
655 0 |a Electronic books. 
655 4 |a Electronic books. 
700 1 |a Nevo, Amos,  |d 1966-  |0 http://id.loc.gov/authorities/names/n2009006495 
776 0 8 |i Print version:  |a Gorodnik, Alexander, 1975-  |t Ergodic theory of lattice subgroups.  |d Princeton, N.J. : Princeton University Press, 2010  |z 9780691141848  |w (DLC) 2009003729  |w (OCoLC)301705885 
830 0 |a Annals of mathematics studies ;  |v no. 172.  |0 http://id.loc.gov/authorities/names/n42002129 
903 |a HeVa 
929 |a oclccm 
999 f f |i 51999405-d2aa-5dcf-94e5-7764d1b81819  |s 280558d9-6efa-5d4b-ab13-9201679cdc6f 
928 |t Library of Congress classification  |a QA313 .G67 2010eb  |l Online  |c UC-FullText  |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=e000xna&AN=295569  |z eBooks on EBSCOhost  |g ebooks  |i 12273801