Electron paramagnetic resonance of transition ions /
Saved in:
Author / Creator: | Abragam, A. |
---|---|
Imprint: | Oxford : Oxford University Press, ©2012. |
Description: | 1 online resource (xiv, 911 pages) : illustrations. |
Language: | English |
Series: | Oxford Classic Texts in the Physical Sciences Oxford classic texts in the physical sciences. |
Subject: | |
Format: | E-Resource Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/11305822 |
Table of Contents:
- Cover; CONTENTS; PART I: PRELIMINARY SURVEY; 1. INTRODUCTION TO ELECTRON PARAMAGNETIC RESONANCE; 1.1. Electronic and nuclear magnetic dipole moments; 1.2. Hyperfine structure in a free atom or ion; 1.3. Magnetic resonance; 1.4. Effective spin and anisotropy; 1.5. 'Initial splittings' or 'fine structure'; 1.6. Magnetic hyperfine structure; 1.7. Hyperfine structure including nuclear electric quadrupole interaction; 1.8. A simple example; 1.9. Transition group ions and ligand fields; 1.10. Spin-spin interaction; 1.11. Spin-lattice interaction; 1.12. Dynamic nuclear orientation; 1.13. Endor.
- 1.14. Experimental aspectsPART II: GENERAL SURVEY; 2. THE RESONANCE PHENOMENON; 2.1. Use of rotating coordinates; 2.2. Magnetic resonance; 2.3. Quantum-mechanical analysis; 2.4. Magnetic resonance in aggregated systems; 2.5. Adiabatic rapid passage; 2.6. Relaxation effects; 2.7. Radio-frequency pulses and spin-echoes; 2.8. Solution of the macroscopic equations for slow passage; 2.9. Intensity and line width; 2.10. Spectrometer sensitivity; 3. THE SPIN HAMILTONIAN AND THE SPECTRUM; 3.1. The spin Hamiltonian; 3.2. The effect of anisotropy in the g-factor; 3.3. Multipole fine structure.
- 3.4. Fine structure in cubic fields (S = 5/2, 7/2)3.5. Electronic 'quadrupole' fine structure (S = 1, 8/2); 3.6. Electronic 'quadrupole' fine structure in a strong magnetic field; 3.7. Hyperfine structure I-introductory remarks; 3.8. Hyperfine structure II-strong external field; 3.9. Hyperfine structure III-nuclear electric quadrupole interaction; 3.10. 'Forbidden' hyperfine transitions; 3.11. Ligand hyperfine structure; 3.12. The spectrum of a powder; 3.13. Effects of crystal imperfections; 3.14. Weak-field Zeeman interaction for non-Kramers ions; 4. ELECTRON-NUCLEAR DOUBLE RESONANCE (ENDOR).
- 4.1. Introduction4.2. The Endor spectrum; 4.3. Enhancement of the nuclear transition probability; 4.4. Endor on donors in silicon; 4.5. Endor on donors in silicon-relaxation effects; 4.6. Relaxation effects in Endor-general; 4.7. The hyperfine structure of europium; 4.8. The Endor spectrum of Nd[sup(3+)] in LaCl[sub(3)]; 4.9. Endor measurements of ligand hyperfine structure; 4.10. Endor line widths; 4.11. 'Indirect'observation of Endor transitions; 4.12. Summary; 5. THE LANTHANIDE (4f) GROUP; 5.1. Lanthanide compounds; 5.2. The free ions; 5.3. Crystalline field theory-C[sub(3h)] symmetry.
- 5.4. Magnetic hyperfine structure5.5. Nuclear electric quadrupole interaction; 5.6. Experimental results for ethylsulphates and anhydrous chlorides; 5.7. Experimental results for the double nitrates, Ln[sub(2)]Mg[sub(3)](NO[sub(3)])[sub(12)], 24H[sub(2)]O; 5.8. Lanthanide ions in cubic symmetry; 5.9. Ions with a half-filled 4f-shell, 4f[sup(7)], [sup(8)]S[sub(7/2)]. Eu[sup(2+)], Gd[sup(3+)], Tb[sup(4+)]; 5.10. Higher-order terms in the spin Hamiltonian; 6. THE ACTINIDE (5f) GROUP; 6.1. Ions and compounds of the actinide group; 6.2. Tripositive actinide ions; 6.3. Actinide ions in CaF[sub(2)].