Time series analysis and its applications : with R examples /

Saved in:
Bibliographic Details
Author / Creator:Shumway, Robert H., author.
Edition:Fourth edition.
Imprint:Cham, Switzerland : Springer, [2017]
©2017
Description:1 online resource (xiii, 562 pages) : illustrations (some color)
Language:English
Series:Springer Texts in Statistics, 2197-4136
Springer texts in statistics.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11323191
Hidden Bibliographic Details
Other authors / contributors:Stoffer, David S., author.
ISBN:9783319524528
3319524526
9783319524511
3319524518
Digital file characteristics:text file
PDF
Notes:Includes bibliographical references (pages 545-555) and index.
Print version record.
Summary:"The fourth edition of this popular graduate textbook, like its predecessors, presents a balanced and comprehensive treatment of both time and frequency domain methods with accompanying theory. Numerous examples using nontrivial data illustrate solutions to problems such as discovering natural and anthropogenic climate change, evaluating pain perception experiments using functional magnetic resonance imaging, and monitoring a nuclear test ban treaty. The book is designed as a textbook for graduate level students in the physical, biological, and social sciences and as a graduate level text in statistics. Some parts may also serve as an undergraduate introductory course. Theory and methodology are separated to allow presentations on different levels. In addition to coverage of classical methods of time series regression, ARIMA models, spectral analysis and state-space models, the text includes modern developments including categorical time series analysis, multivariate spectral methods, long memory series, nonlinear models, resampling techniques, GARCH models, ARMAX models, stochastic volatility, wavelets, and Markov chain Monte Carlo integration methods. This edition includes R code for each numerical example in addition to Appendix R, which provides a reference for the data sets and R scripts used in the text in addition to a tutorial on basic R commands and R time series. An additional file is available on the book's website for download, making all the data sets and scripts easy to load into R. Student-tested and improved; Accessible and complete treatment of modern time series analysis; Promotes understanding of theoretical concepts by bringing them into a more practical context; Comprehensive appendices covering the necessities of understanding the mathematics of time series analysis; Instructor's Manual available for adopters. New to this edition: Introductions to each chapter replaced with one-page abstracts; All graphics and plots redone and made uniform in style; Bayesian section completely rewritten, covering linear Gaussian state space models only; R code for each example provided directly in the text for ease of data analysis replication; Expanded appendices with tutorials containing basic R and R time series commands; Data sets and additional R scripts available for download on Springer.com; Internal online links to every reference (equations, examples, chapters, etc.)."--Publisher's description
Target Audience:Graduate students in physical, biological, and social sciences as well as in statistics. Some parts appropriate for undergraduates.
Other form:Print version: Shumway, Robert H. Time series analysis and its applications. Fourth Edition. Cham, Switzerland : Springer, [2017] 3319524518
Standard no.:10.1007/978-3-319-52452-8

MARC

LEADER 00000cam a2200000Ii 4500
001 11323191
005 20210625184320.7
006 m o d
007 cr mn|||||||||
008 170807t20172017sz a fob 001 0 eng d
015 |a GBB901490  |2 bnb 
016 7 |a 019191237  |2 Uk 
019 |a 1005770686  |a 1017978567  |a 1021268828  |a 1040276679  |a 1086451137 
020 |a 9783319524528  |q (electronic bk.) 
020 |a 3319524526  |q (electronic bk.) 
020 |z 9783319524511  |q (print) 
020 |z 3319524518  |q (print) 
024 7 |a 10.1007/978-3-319-52452-8  |2 doi 
035 |a (OCoLC)999821221  |z (OCoLC)1005770686  |z (OCoLC)1017978567  |z (OCoLC)1021268828  |z (OCoLC)1040276679  |z (OCoLC)1086451137 
035 9 |a (OCLCCM-CC)999821221 
037 |a 3EAEC0B1-EB46-49F3-9BB6-E8E7C7352757  |b OverDrive, Inc.  |n http://www.overdrive.com 
040 |a NOC  |b eng  |e rda  |e pn  |c NOC  |d UIU  |d MNU  |d MERER  |d VT2  |d OCLCQ  |d TEFOD  |d GW5XE  |d FTU  |d YDX  |d JG0  |d OCLCQ  |d OCL  |d IOG  |d KSU  |d U3W  |d OSU  |d ESU  |d WYU  |d LVT  |d OCLCF  |d AU@  |d UKMGB  |d DKDLA  |d HUELT  |d CAUOI  |d AUD  |d OCLCQ  |d ERF  |d OCLCO  |d UKAHL  |d EBLCP  |d OCLCQ  |d NLW  |d OCLCO 
049 |a MAIN 
050 4 |a QA280  |b .S585 2017 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
100 1 |a Shumway, Robert H.,  |e author.  |0 http://id.loc.gov/authorities/names/n86145292 
245 1 0 |a Time series analysis and its applications :  |b with R examples /  |c Robert H. Shumway, David S. Stoffer. 
250 |a Fourth edition. 
264 1 |a Cham, Switzerland :  |b Springer,  |c [2017] 
264 4 |c ©2017 
300 |a 1 online resource (xiii, 562 pages) :  |b illustrations (some color) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
347 |b PDF 
490 1 |a Springer Texts in Statistics,  |x 2197-4136 
520 |a "The fourth edition of this popular graduate textbook, like its predecessors, presents a balanced and comprehensive treatment of both time and frequency domain methods with accompanying theory. Numerous examples using nontrivial data illustrate solutions to problems such as discovering natural and anthropogenic climate change, evaluating pain perception experiments using functional magnetic resonance imaging, and monitoring a nuclear test ban treaty. The book is designed as a textbook for graduate level students in the physical, biological, and social sciences and as a graduate level text in statistics. Some parts may also serve as an undergraduate introductory course. Theory and methodology are separated to allow presentations on different levels. In addition to coverage of classical methods of time series regression, ARIMA models, spectral analysis and state-space models, the text includes modern developments including categorical time series analysis, multivariate spectral methods, long memory series, nonlinear models, resampling techniques, GARCH models, ARMAX models, stochastic volatility, wavelets, and Markov chain Monte Carlo integration methods. This edition includes R code for each numerical example in addition to Appendix R, which provides a reference for the data sets and R scripts used in the text in addition to a tutorial on basic R commands and R time series. An additional file is available on the book's website for download, making all the data sets and scripts easy to load into R. Student-tested and improved; Accessible and complete treatment of modern time series analysis; Promotes understanding of theoretical concepts by bringing them into a more practical context; Comprehensive appendices covering the necessities of understanding the mathematics of time series analysis; Instructor's Manual available for adopters. New to this edition: Introductions to each chapter replaced with one-page abstracts; All graphics and plots redone and made uniform in style; Bayesian section completely rewritten, covering linear Gaussian state space models only; R code for each example provided directly in the text for ease of data analysis replication; Expanded appendices with tutorials containing basic R and R time series commands; Data sets and additional R scripts available for download on Springer.com; Internal online links to every reference (equations, examples, chapters, etc.)."--Publisher's description 
504 |a Includes bibliographical references (pages 545-555) and index. 
521 |a Graduate students in physical, biological, and social sciences as well as in statistics. Some parts appropriate for undergraduates. 
505 0 |a Characteristics of time series -- Time series regression and exploratory data Analysis -- ARIMA models -- Spectral analysis and filtering -- Additional time domain topics -- State space models -- Statistical methods in the frequency domain. 
588 0 |a Print version record. 
650 0 |a Time-series analysis.  |0 http://id.loc.gov/authorities/subjects/sh85135430 
650 0 |a Time-series analysis  |x Data processing. 
650 0 |a R (Computer program language)  |0 http://id.loc.gov/authorities/subjects/sh2002004407 
650 7 |a Probability & statistics.  |2 bicssc 
650 7 |a Medical  |x Biostatistics.  |2 bisacsh 
650 7 |a Mathematics  |x Probability & Statistics  |x General.  |2 bisacsh 
650 7 |a R (Computer program language)  |2 fast  |0 (OCoLC)fst01086207 
650 7 |a Time-series analysis.  |2 fast  |0 (OCoLC)fst01151190 
650 7 |a Time-series analysis  |x Data processing.  |2 fast  |0 (OCoLC)fst01151192 
655 0 |a Electronic books. 
655 4 |a Electronic books. 
655 7 |a Textbooks.  |2 fast  |0 (OCoLC)fst01423863 
655 7 |a Textbooks.  |2 lcgft  |0 http://id.loc.gov/authorities/genreForms/gf2014026191 
700 1 |a Stoffer, David S.,  |e author.  |0 http://id.loc.gov/authorities/names/n99830745 
776 0 8 |i Print version:  |a Shumway, Robert H.  |t Time series analysis and its applications.  |b Fourth Edition.  |d Cham, Switzerland : Springer, [2017]  |z 3319524518  |w (OCoLC)966563984 
830 0 |a Springer texts in statistics.  |x 1431-875X  |0 http://id.loc.gov/authorities/names/n84743107 
903 |a HeVa 
929 |a oclccm 
999 f f |i 3734280a-6894-5cf9-9d0a-112e5b5dd926  |s d275189c-7b59-5c96-a894-464a5b517b68 
928 |t Library of Congress classification  |a QA280 .S585 2017  |l Online  |c UC-FullText  |u https://link.springer.com/10.1007/978-3-319-52452-8  |z Springer Nature  |g ebooks  |i 12547406