Equations involving malliavin calculus operators : applications and numerical approximation /

Saved in:
Bibliographic Details
Author / Creator:Levajkovic, Tijana, author.
Imprint:Cham, Switzerland : Springer, [2017]
©2017
Description:1 online resource
Language:English
Series:SpringerBriefs in mathematics
SpringerBriefs in mathematics.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11361278
Hidden Bibliographic Details
Other authors / contributors:Mena, Hermann, author.
ISBN:9783319656786
3319656783
9783319656779
3319656775
Digital file characteristics:text file
PDF
Notes:Includes bibliographical references.
Print version record.
Summary:This book provides a comprehensive and unified introduction to stochastic differential equations and related optimal control problems. The material is new and the presentation is reader-friendly. A major contribution of the book is the development of generalized Malliavin calculus in the framework of white noise analysis, based on chaos expansion representation of stochastic processes and its application for solving several classes of stochastic differential equations with singular data involving the main operators of Malliavin calculus. In addition, applications in optimal control and numerical approximations are discussed. The book is divided into four chapters. The first, entitled White Noise Analysis and Chaos Expansions, includes notation and provides the reader with the theoretical background needed to understand the subsequent chapters. In Chapter 2, Generalized Operators of Malliavin Calculus, the Malliavin derivative operator, the Skorokhod integral and the Ornstein-Uhlenbeck operator are introduced in terms of chaos expansions. The main properties of the operators, which are known in the literature for the square integrable processes, are proven using the chaos expansion approach and extended for generalized and test stochastic processes. Chapter 3, Equations involving Malliavin Calculus operators, is devoted to the study of several types of stochastic differential equations that involve the operators of Malliavin calculus, introduced in the previous chapter. Fractional versions of these operators are also discussed. Finally, in Chapter 4, Applications and Numerical Approximations are discussed. Specifically, we consider the stochastic linear quadratic optimal control problem with different forms of noise disturbances, operator differential algebraic equations arising in fluid dynamics, stationary equations and fractional versions of the equations studied - applications never covered in the extant literature. Moreover, numerical validations of the method are provided for specific problems."
Other form:Print version: 9783319656779 3319656775
Standard no.:10.1007/978-3-319-65678-6

MARC

LEADER 00000cam a2200000 i 4500
001 11361278
006 m o d
007 cr |n|||||||||
008 170906s2017 sz ob 000 0 eng d
005 20240509213351.1
016 7 |a 019109889  |2 Uk 
019 |a 1003205362  |a 1003251642  |a 1008876929  |a 1012075070  |a 1017870445  |a 1021251458  |a 1066632216  |a 1156223569 
020 |a 9783319656786  |q (electronic bk.) 
020 |a 3319656783  |q (electronic bk.) 
020 |z 9783319656779 
020 |z 3319656775 
024 7 |a 10.1007/978-3-319-65678-6  |2 doi 
035 |a (OCoLC)1003106683  |z (OCoLC)1003205362  |z (OCoLC)1003251642  |z (OCoLC)1008876929  |z (OCoLC)1012075070  |z (OCoLC)1017870445  |z (OCoLC)1021251458  |z (OCoLC)1066632216  |z (OCoLC)1156223569 
035 9 |a (OCLCCM-CC)1003106683 
037 |a com.springer.onix.9783319656786  |b Springer Nature 
040 |a YDX  |b eng  |e rda  |e pn  |c YDX  |d N$T  |d EBLCP  |d GW5XE  |d N$T  |d OCLCF  |d STF  |d AZU  |d UPM  |d MERER  |d FIE  |d IOG  |d COO  |d OCLCQ  |d IDB  |d MERUC  |d VT2  |d JG0  |d U3W  |d CAUOI  |d OCLCQ  |d KSU  |d EZ9  |d ESU  |d WYU  |d OCLCQ  |d UKMGB  |d OCLCQ  |d UKAHL  |d OCLCQ  |d ERF  |d OCLCQ 
049 |a MAIN 
050 4 |a QA274.2 
072 7 |a MAT  |x 003000  |2 bisacsh 
072 7 |a MAT  |x 029000  |2 bisacsh 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
100 1 |a Levajkovic, Tijana,  |e author. 
245 1 0 |a Equations involving malliavin calculus operators :  |b applications and numerical approximation /  |c Tijana Levajković, Hermann Mena. 
264 1 |a Cham, Switzerland :  |b Springer,  |c [2017] 
264 4 |c ©2017 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
347 |b PDF 
490 1 |a SpringerBriefs in mathematics 
504 |a Includes bibliographical references. 
505 0 |a Preface; Contents; 1 White Noise Analysis and Chaos Expansions; 1.1 Introduction; 1.2 Deterministic Background; 1.3 Spaces of Random Variables; 1.3.1 Gaussian White Noise Space; 1.3.2 Wiener-Itô Chaos Expansion of Random Variables; 1.3.3 Kondratiev Spaces; 1.3.4 Hilbert Space Valued Kondratiev Type Random Variables; 1.3.5 Wick Product; 1.3.6 Fractional Gaussian White Noise Space; 1.4 Stochastic Processes; 1.4.1 Chaos Expansion Representation of Stochastic Processes; 1.4.2 Schwartz Spaces Valued Stochastic Processes; 1.4.3 Fractional Operator mathcalM. 
505 8 |a 1.4.4 Multiplication of Stochastic Processes1.5 Operators; References; 2 Generalized Operators of Malliavin Calculus; 2.1 Introduction; 2.2 The Malliavin derivative ; 2.3 The Skorokhod Integral; 2.4 The Ornstein-Uhlenbeck Operator; 2.5 Properties of the Operators of Malliavin Calculus; 2.6 Fractional Operators of the Malliavin Calculus; References; 3 Equations Involving Mallivin Calculus Operators; 3.1 Introduction; 3.2 Equations with the Ornstein-Uhlenbeck Operator; 3.3 First Order Equation with the Malliavin Derivative Operator. 
505 8 |a 3.4 Nonhomogeneous Equation with the Malliavin Derivative Operator3.5 Wick-Type Equations Involving the Malliavin Derivative; 3.6 Integral Equation; References; 4 Applications and Numerical Approximation; 4.1 Introduction; 4.2 A Stochastic Optimal Control Problem in Infinite Dimensions; 4.2.1 State Equation with a Delta-Noise; 4.2.2 Random Coefficients; 4.2.3 Further Extensions; 4.3 Operator Differential Algebraic Equations; 4.3.1 Extension to Nonlinear Equations; 4.4 Stationary Equations; 4.5 A Fractional Optimal Control Problem; 4.6 Numerical Approximation; 4.6.1 Elliptic Equation. 
588 0 |a Print version record. 
520 |a This book provides a comprehensive and unified introduction to stochastic differential equations and related optimal control problems. The material is new and the presentation is reader-friendly. A major contribution of the book is the development of generalized Malliavin calculus in the framework of white noise analysis, based on chaos expansion representation of stochastic processes and its application for solving several classes of stochastic differential equations with singular data involving the main operators of Malliavin calculus. In addition, applications in optimal control and numerical approximations are discussed. The book is divided into four chapters. The first, entitled White Noise Analysis and Chaos Expansions, includes notation and provides the reader with the theoretical background needed to understand the subsequent chapters. In Chapter 2, Generalized Operators of Malliavin Calculus, the Malliavin derivative operator, the Skorokhod integral and the Ornstein-Uhlenbeck operator are introduced in terms of chaos expansions. The main properties of the operators, which are known in the literature for the square integrable processes, are proven using the chaos expansion approach and extended for generalized and test stochastic processes. Chapter 3, Equations involving Malliavin Calculus operators, is devoted to the study of several types of stochastic differential equations that involve the operators of Malliavin calculus, introduced in the previous chapter. Fractional versions of these operators are also discussed. Finally, in Chapter 4, Applications and Numerical Approximations are discussed. Specifically, we consider the stochastic linear quadratic optimal control problem with different forms of noise disturbances, operator differential algebraic equations arising in fluid dynamics, stationary equations and fractional versions of the equations studied - applications never covered in the extant literature. Moreover, numerical validations of the method are provided for specific problems." 
650 0 |a Stochastic differential equations.  |0 http://id.loc.gov/authorities/subjects/sh85128177 
650 0 |a Malliavin calculus.  |0 http://id.loc.gov/authorities/subjects/sh91004306 
650 7 |a Functional analysis & transforms.  |2 bicssc 
650 7 |a Differential calculus & equations.  |2 bicssc 
650 7 |a Calculus of variations.  |2 bicssc 
650 7 |a Numerical analysis.  |2 bicssc 
650 7 |a Probability & statistics.  |2 bicssc 
650 7 |a MATHEMATICS  |x Applied.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x General.  |2 bisacsh 
650 7 |a Malliavin calculus.  |2 fast  |0 (OCoLC)fst01006757 
650 7 |a Stochastic differential equations.  |2 fast  |0 (OCoLC)fst01133506 
655 4 |a Electronic books. 
700 1 |a Mena, Hermann,  |e author. 
776 0 8 |i Print version:  |z 9783319656779  |z 3319656775  |w (OCoLC)994639653 
830 0 |a SpringerBriefs in mathematics.  |0 http://id.loc.gov/authorities/names/no2011133396 
903 |a HeVa 
929 |a oclccm 
999 f f |i 6d29f118-b8fa-5306-878a-ea0cc6f0926c  |s 9a46da08-90c8-5dba-8d9f-5203d7f355b7 
928 |t Library of Congress classification  |a QA274.2  |l Online  |c UC-FullText  |u https://link.springer.com/10.1007/978-3-319-65678-6  |z Springer Nature  |g ebooks  |i 12548358