Non-instantaneous impulses in differential equations /

Saved in:
Bibliographic Details
Author / Creator:Agarwal, Ravi P., author.
Imprint:Cham, Switzerland : Springer, [2017]
©2017
Description:1 online resource
Language:English
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11384636
Hidden Bibliographic Details
Other authors / contributors:Hristova, Snezhana G., author.
O'Regan, Donal, author.
ISBN:9783319663845
3319663844
9783319663838
3319663836
Digital file characteristics:text file PDF
Notes:Includes bibliographical references.
Online resource; title from PDF title page (EBSCO, viewed November 3, 2017).
Summary:"This monograph is the first published book devoted to the theory of differential equations with non-instantaneous impulses. It aims to equip the reader with mathematical models and theory behind real life processes in physics, biology, population dynamics, ecology and pharmacokinetics. The authors examine a wide scope of differential equations with non-instantaneous impulses through three comprehensive chapters, providing an all-rounded and unique presentation on the topic, including:- Ordinary differential equations with non-instantaneous impulses (scalar and n-dimensional case)- Fractional differential equations with non-instantaneous impulses (with Caputo fractional derivatives of order q ∊ (0, 1))- Ordinary differential equations with non-instantaneous impulses occurring at random moments (with exponential, Erlang, or Gamma distribution)Each chapter focuses on theory, proofs and examples, and contains numerous graphs to enrich the reader's understanding. Additionally, a carefully selected bibliography is included. Graduate students at various levels as well as researchers in differential equations and related fields will find this a valuable resource of both introductory and advanced material."--
This monograph is the first published book devoted to the theory of differential equations with non-instantaneous impulses. It aims to equip the reader with mathematical models and theory behind real life processes in physics, biology, population dynamics, ecology and pharmacokinetics. The authors examine a wide scope of differential equations with non-instantaneous impulses through three comprehensive chapters, providing an all-rounded and unique presentation on the topic, including: - Ordinary differential equations with non-instantaneous impulses (scalar and n-dimensional case) - Fractional differential equa tions with non-instantaneous impulses (with Caputo fractional derivatives of order q ϵ (0, 1)) - Ordinary differential equations with non-instantaneous impulses occurring at random moments (with exponential, Erlang, or Gamma distribution) Each chapter focuses on theory, proofs and examples, and contains numerous graphs to enrich the reader's understanding. Additionally, a carefully selected bibliography is included. Graduate students at various levels as well as researchers in differential equations and related fields will find this a valuable resource of both introductory and advanced material.--
Other form:Print version: Agarwal, Ravi P. Non-instantaneous impulses in differential equations. Cham, Switzerland : Springer, [2017] 9783319663838 3319663836
Standard no.:10.1007/978-3-319-66384-5

MARC

LEADER 00000cam a2200000Ii 4500
001 11384636
005 20210625183918.8
006 m o d
007 cr cnu|||unuuu
008 171101s2017 sz ob 000 0 eng d
015 |a GBB8N8294  |2 bnb 
016 7 |a 019168703  |2 Uk 
019 |a 1008988229  |a 1013516946  |a 1013909629  |a 1017937751  |a 1021256714  |a 1058638482  |a 1066472647  |a 1082108238  |a 1086439834 
020 |a 9783319663845  |q (electronic bk.) 
020 |a 3319663844  |q (electronic bk.) 
020 |z 9783319663838 
020 |z 3319663836 
024 7 |a 10.1007/978-3-319-66384-5  |2 doi 
035 |a (OCoLC)1008868155  |z (OCoLC)1008988229  |z (OCoLC)1013516946  |z (OCoLC)1013909629  |z (OCoLC)1017937751  |z (OCoLC)1021256714  |z (OCoLC)1058638482  |z (OCoLC)1066472647  |z (OCoLC)1082108238  |z (OCoLC)1086439834 
035 9 |a (OCLCCM-CC)1008868155 
037 |a com.springer.onix.9783319663845  |b Springer Nature 
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d YDX  |d GW5XE  |d FIE  |d UAB  |d EBLCP  |d MERER  |d OCLCF  |d UPM  |d IOG  |d JG0  |d COO  |d STF  |d U3W  |d CAUOI  |d COS  |d COF  |d OCLCQ  |d KSU  |d VT2  |d NJR  |d AU@  |d ESU  |d WYU  |d OCLCQ  |d LVT  |d OCLCQ  |d UKMGB  |d UKAHL  |d OCLCQ  |d U@J  |d OCLCQ  |d SRU 
049 |a MAIN 
050 4 |a QA377 
066 |c Grek 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
072 7 |a PBKJ  |2 bicssc 
100 1 |a Agarwal, Ravi P.,  |e author. 
245 1 0 |a Non-instantaneous impulses in differential equations /  |c Ravi Agarwal, Snezhana Hristova, Donal O'Regan. 
264 1 |a Cham, Switzerland :  |b Springer,  |c [2017] 
264 4 |c ©2017 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
588 0 |a Online resource; title from PDF title page (EBSCO, viewed November 3, 2017). 
504 |a Includes bibliographical references. 
520 |6 880-01  |a "This monograph is the first published book devoted to the theory of differential equations with non-instantaneous impulses. It aims to equip the reader with mathematical models and theory behind real life processes in physics, biology, population dynamics, ecology and pharmacokinetics. The authors examine a wide scope of differential equations with non-instantaneous impulses through three comprehensive chapters, providing an all-rounded and unique presentation on the topic, including:- Ordinary differential equations with non-instantaneous impulses (scalar and n-dimensional case)- Fractional differential equations with non-instantaneous impulses (with Caputo fractional derivatives of order q ∊ (0, 1))- Ordinary differential equations with non-instantaneous impulses occurring at random moments (with exponential, Erlang, or Gamma distribution)Each chapter focuses on theory, proofs and examples, and contains numerous graphs to enrich the reader's understanding. Additionally, a carefully selected bibliography is included. Graduate students at various levels as well as researchers in differential equations and related fields will find this a valuable resource of both introductory and advanced material."--  |c Provided by publisher. 
505 0 |a Preface -- Introduction -- 1. Non-instantaneous Impulses in Differential Equations -- 2. Non-instantaneous Impulses in Differential Equations with Caputo fractional derivatives -- 3. Non-instantaneous Impulses on Random time in Differential Equations with Ordinary/Fractional Derivatives -- Bibliography. 
650 0 |a Impulsive differential equations.  |0 http://id.loc.gov/authorities/subjects/sh2009001057 
650 1 4 |a Mathematics.  |0 http://id.loc.gov/authorities/subjects/sh85082139 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Ordinary Differential Equations. 
650 7 |a Differential calculus & equations.  |2 bicssc 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Impulsive differential equations.  |2 fast  |0 (OCoLC)fst01747497 
655 0 |a Electronic books. 
655 4 |a Electronic books. 
700 1 |a Hristova, Snezhana G.,  |e author. 
700 1 |a O'Regan, Donal,  |e author. 
776 0 8 |i Print version:  |a Agarwal, Ravi P.  |t Non-instantaneous impulses in differential equations.  |d Cham, Switzerland : Springer, [2017]  |z 9783319663838  |z 3319663836  |w (OCoLC)994640014 
880 |6 520-01/Grek  |a This monograph is the first published book devoted to the theory of differential equations with non-instantaneous impulses. It aims to equip the reader with mathematical models and theory behind real life processes in physics, biology, population dynamics, ecology and pharmacokinetics. The authors examine a wide scope of differential equations with non-instantaneous impulses through three comprehensive chapters, providing an all-rounded and unique presentation on the topic, including: - Ordinary differential equations with non-instantaneous impulses (scalar and n-dimensional case) - Fractional differential equa tions with non-instantaneous impulses (with Caputo fractional derivatives of order q ϵ (0, 1)) - Ordinary differential equations with non-instantaneous impulses occurring at random moments (with exponential, Erlang, or Gamma distribution) Each chapter focuses on theory, proofs and examples, and contains numerous graphs to enrich the reader's understanding. Additionally, a carefully selected bibliography is included. Graduate students at various levels as well as researchers in differential equations and related fields will find this a valuable resource of both introductory and advanced material.--  |c Provided by publisher. 
903 |a HeVa 
929 |a oclccm 
999 f f |i 212cbd41-1493-54e1-9e92-2692b1b1d7fe  |s 4e93f5ee-712b-5fe2-ad47-90300e897577 
928 |t Library of Congress classification  |a QA377  |l Online  |c UC-FullText  |u https://link.springer.com/10.1007/978-3-319-66384-5  |z Springer Nature  |g ebooks  |i 12549260