Stochastic Methods for Boundary Value Problems : Numerics for High-dimensional PDEs and Applications.

Saved in:
Bibliographic Details
Author / Creator:Sabelfeld, Karl K.
Imprint:Berlin/Boston, GERMANY : De Gruyter, 2016.
©2016
Description:1 online resource (208)
Language:English
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11408344
Hidden Bibliographic Details
Other authors / contributors:Simonov, N. A.
ISBN:3110479451
9783110479454
9783110479454
9783110479164
3110479168
3110479060
9783110479065
Digital file characteristics:text file PDF
Notes:Includes bibliographical references.
In English.
Print version record.
Summary:This monograph is devoted to random walk based stochastic algorithms for solving high-dimensional boundary value problems of mathematical physics and chemistry. It includes Monte Carlo methods where the random walks live not only on the boundary, but also inside the domain. A variety of examples from capacitance calculations to electron dynamics in semiconductors are discussed to illustrate the viability of the approach.
Other form:Print version: 9783110479065 3110479060
Standard no.:10.1515/9783110479454

MARC

LEADER 00000cam a2200000Ma 4500
001 11408344
006 m o d
007 cr |n|||||||||
008 161007s2016 gw ob 000 0 eng d
005 20240510213057.3
019 |a 962125295  |a 979760869  |a 1055398287  |a 1066429723  |a 1081237459  |a 1162019826 
020 |a 3110479451  |q (electronic bk.) 
020 |a 9783110479454  |q (electronic bk.) 
020 |z 9783110479454 
020 |z 9783110479164 
020 |z 3110479168 
020 |z 3110479060 
020 |z 9783110479065  |q (alk. paper) 
024 7 |a 10.1515/9783110479454  |2 doi 
035 |a (OCoLC)960040322  |z (OCoLC)962125295  |z (OCoLC)979760869  |z (OCoLC)1055398287  |z (OCoLC)1066429723  |z (OCoLC)1081237459  |z (OCoLC)1162019826 
035 9 |a (OCLCCM-CC)960040322 
037 |a 957921  |b MIL 
040 |a IDEBK  |b eng  |e pn  |c IDEBK  |d EBLCP  |d IDEBK  |d YDX  |d N$T  |d COO  |d DEBBG  |d OCLCF  |d IDB  |d OCLCQ  |d OTZ  |d HEBIS  |d OCLCO  |d OCLCQ  |d COCUF  |d CCO  |d MERUC  |d DEGRU  |d ZCU  |d OCLCO  |d K6U  |d SNK  |d DKU  |d AUW  |d INTCL  |d MHW  |d IGB  |d D6H  |d N$T  |d OCLCQ  |d WRM  |d STF  |d VTS  |d ICG  |d INT  |d VT2  |d WYU  |d OCLCQ  |d G3B  |d LVT  |d S8J  |d S9I  |d TKN  |d OCLCQ  |d LEAUB  |d DKC  |d OCLCQ  |d UKAHL  |d OCLCQ 
049 |a MAIN 
050 4 |a QA379 
072 7 |a MAT  |x 003000  |2 bisacsh 
072 7 |a MAT  |x 029000  |2 bisacsh 
100 1 |a Sabelfeld, Karl K. 
245 1 0 |a Stochastic Methods for Boundary Value Problems :  |b Numerics for High-dimensional PDEs and Applications. 
260 |a Berlin/Boston, GERMANY :  |b De Gruyter,  |c 2016. 
264 4 |c ©2016 
300 |a 1 online resource (208) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
588 0 |a Print version record. 
505 0 |a 1 Introduction ; 2 Random walk algorithms for solving integral equations ; 2.1 Conventional Monte Carlo scheme ; 2.2 Biased estimators ; 2.3 Linear-fractional transformations and their relations to iterative processes. 
505 8 |a 2.4 Asymptotically unbiased estimators based on singular approximations 2.5 Integral equation of the first kind ; 3 Random walk-on-boundary algorithms for the Laplace equation ; 3.1 Newton potentials and boundary integral equations of the electrostatics. 
505 8 |a 3.2 The interior Dirichlet problem and isotropic random walk-on-boundary process 3.3 Solution of the Neumann problem ; 3.4 Random estimators for the exterior Dirichlet problem ; 3.5 Third BVP and alternative methods of solving the Dirichlet problem ; 3.6 Inhomogeneous problems. 
505 8 |a 3.7 Continuity BVP 3.7.1 Walk on boundary for the continuity problem ; 3.8 Calculation of the solution derivatives near the boundary ; 3.9 Normal derivative of a double-layer potential ; 4 Walk-on-boundary algorithms for the heat equation. 
505 8 |a 4.1 Heat potentials and Volterra boundary integral equations 4.2 Nonstationary walk-on-boundary process ; 4.3 The Dirichlet problem ; 4.4 The Neumann problem ; 4.5 Third BVP ; 4.6 Unbiasedness and variance of the walk-on-boundary algorithms. 
504 |a Includes bibliographical references. 
520 |a This monograph is devoted to random walk based stochastic algorithms for solving high-dimensional boundary value problems of mathematical physics and chemistry. It includes Monte Carlo methods where the random walks live not only on the boundary, but also inside the domain. A variety of examples from capacitance calculations to electron dynamics in semiconductors are discussed to illustrate the viability of the approach. 
546 |a In English. 
650 0 |a Boundary value problems  |x Numerical solutions.  |0 http://id.loc.gov/authorities/subjects/sh85016105 
650 0 |a Stochastic analysis.  |0 http://id.loc.gov/authorities/subjects/sh85128175 
650 0 |a Random walks (Mathematics)  |0 http://id.loc.gov/authorities/subjects/sh85111357 
650 7 |a MATHEMATICS  |x Applied.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x General.  |2 bisacsh 
650 7 |a Boundary value problems  |x Numerical solutions.  |2 fast  |0 (OCoLC)fst00837129 
650 7 |a Random walks (Mathematics)  |2 fast  |0 (OCoLC)fst01089818 
650 7 |a Stochastic analysis.  |2 fast  |0 (OCoLC)fst01133499 
650 7 |a Partielle Differentialgleichung  |2 gnd  |0 http://d-nb.info/gnd/4044779-0 
650 7 |a Integralgleichung  |2 gnd  |0 http://d-nb.info/gnd/4027229-1 
650 7 |a Randwertproblem  |2 gnd  |0 http://d-nb.info/gnd/4048395-2 
650 7 |a Monte-Carlo-Simulation  |2 gnd  |0 http://d-nb.info/gnd/4240945-7 
650 7 |a Irrfahrtsproblem  |2 gnd  |0 http://d-nb.info/gnd/4162442-7 
655 4 |a Electronic books. 
700 1 |a Simonov, N. A.  |0 http://id.loc.gov/authorities/names/n91005632 
776 0 8 |i Print version:  |z 9783110479065  |z 3110479060  |w (DLC) 2016042706  |w (OCoLC)949750711 
903 |a HeVa 
929 |a oclccm 
999 f f |i 7e7ea687-aa28-5a1a-bf1c-7724937e868a  |s 71c96334-1207-5494-ba07-9b3f7131df18 
928 |t Library of Congress classification  |a QA379  |l Online  |c UC-FullText  |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=e000xna&AN=1362724  |z eBooks on EBSCOhost  |g ebooks  |i 12444040