A metaheuristic approach to protein structure prediction : algorithms and insights from fitness landscape analysis /

Saved in:
Bibliographic Details
Author / Creator:Jana, Nanda Dulal, author.
Imprint:Cham : Springer, 2018.
Description:1 online resource (XXIX, 220 pages) : illustrations
Language:English
Series:Emergence, Complexity and Computation, 2194-7287 ; 31
Emergence, complexity and computation ; 31.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11544034
Hidden Bibliographic Details
Other authors / contributors:Das, Swagatam, author.
Sil, Jaya, author.
ISBN:9783319747750
3319747754
9783319747743
3319747746
Digital file characteristics:text file PDF
Notes:Includes bibliographical references.
Summary:This book introduces characteristic features of the protein structure prediction (PSP) problem. It focuses on systematic selection and improvement of the most appropriate metaheuristic algorithm to solve the problem based on a fitness landscape analysis, rather than on the nature of the problem, which was the focus of methodologies in the past. Protein structure prediction is concerned with the question of how to determine the three-dimensional structure of a protein from its primary sequence. Recently a number of successful metaheuristic algorithms have been developed to determine the native structure, which plays an important role in medicine, drug design, and disease prediction. This interdisciplinary book consolidates the concepts most relevant to protein structure prediction (PSP) through global non-convex optimization. It is intended for graduate students from fields such as computer science, engineering, bioinformatics and as a reference for researchers and practitioners.
Other form:Printed edition: 9783319747743
Standard no.:10.1007/978-3-319-74775-0

MARC

LEADER 00000cam a2200000Mi 4500
001 11544034
005 20210625183928.4
006 m o d
007 cr nn||||mamaa
008 180305s2018 sz a ob 000 0 eng d
019 |a 1028552338  |a 1028668011  |a 1028830837  |a 1043647875  |a 1066184336  |a 1066568412  |a 1091645484  |a 1105185078  |a 1112952815 
020 |a 9783319747750 
020 |a 3319747754 
020 |z 9783319747743 
020 |z 3319747746 
024 7 |a 10.1007/978-3-319-74775-0  |2 doi 
035 |a (OCoLC)1029091211  |z (OCoLC)1028552338  |z (OCoLC)1028668011  |z (OCoLC)1028830837  |z (OCoLC)1043647875  |z (OCoLC)1066184336  |z (OCoLC)1066568412  |z (OCoLC)1091645484  |z (OCoLC)1105185078  |z (OCoLC)1112952815 
035 9 |a (OCLCCM-CC)1029091211 
037 |n Title purchased via APUC SHEDL / ScopNet ebook agreement  |n Engineering (Springer-11647) 
040 |a AZU  |b eng  |e rda  |e pn  |c AZU  |d OCLCO  |d N$T  |d GW5XE  |d YDX  |d UPM  |d OCLCF  |d UWO  |d MERER  |d OCLCQ  |d VT2  |d OCLCQ  |d U3W  |d EBLCP  |d CNCEN  |d WYU  |d LVT  |d CAUOI  |d LEAUB  |d OH1  |d OCLCO  |d LQU  |d OCLCQ  |d OCLCO  |d ADU  |d UKAHL  |d OCLCQ  |d OCLCA  |d OCL  |d OCLCO 
049 |a MAIN 
050 4 |a QP551  |b .J35 2018 
072 7 |a SCI  |x 007000  |2 bisacsh 
072 7 |a UYQ  |2 bicssc 
100 1 |a Jana, Nanda Dulal,  |e author. 
245 1 2 |a A metaheuristic approach to protein structure prediction :  |b algorithms and insights from fitness landscape analysis /  |c by Nanda Dulal Jana, Swagatam Das, Jaya Sil. 
264 1 |a Cham :  |b Springer,  |c 2018. 
300 |a 1 online resource (XXIX, 220 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Emergence, Complexity and Computation,  |x 2194-7287 ;  |v 31 
505 0 |a Metaheuristic Protein Structure Prediction-An Overview -- Related Works -- Continuous Landscape Analysis using Random Walk Algorithm -- Landscape Characterization and Algorithms Selection for the PSP Problem -- The Levy distributed Parameter Adaptive Metaheuristic Algorithm for Protein Structure Prediction -- Protein Structure Prediction using Improved Variants of Metaheuristic Algorithms -- Hybrid Metaheuristic Approach for Protein Structure Prediction -- Conclusions and Future Research. 
520 |a This book introduces characteristic features of the protein structure prediction (PSP) problem. It focuses on systematic selection and improvement of the most appropriate metaheuristic algorithm to solve the problem based on a fitness landscape analysis, rather than on the nature of the problem, which was the focus of methodologies in the past. Protein structure prediction is concerned with the question of how to determine the three-dimensional structure of a protein from its primary sequence. Recently a number of successful metaheuristic algorithms have been developed to determine the native structure, which plays an important role in medicine, drug design, and disease prediction. This interdisciplinary book consolidates the concepts most relevant to protein structure prediction (PSP) through global non-convex optimization. It is intended for graduate students from fields such as computer science, engineering, bioinformatics and as a reference for researchers and practitioners. 
504 |a Includes bibliographical references. 
650 0 |a Proteins  |x Structure  |x Mathematical models. 
650 0 |a Proteins  |x Structure  |x Computer simulation. 
650 2 |a Protein Conformation. 
650 2 |a Models, Theoretical. 
650 2 |a Computer Simulation. 
650 7 |a SCIENCE  |x Life Sciences  |x Biochemistry.  |2 bisacsh 
650 7 |a Proteins  |x Structure  |x Mathematical models.  |2 fast  |0 (OCoLC)fst01079761 
650 7 |a Proteins  |x Structure  |x Computer simulation.  |2 fast  |0 (OCoLC)fst01079760 
650 7 |a Artificial intelligence.  |2 fast  |0 (OCoLC)fst00817247 
650 7 |a Computational complexity.  |2 fast  |0 (OCoLC)fst00871991 
650 7 |a Computational intelligence.  |2 fast  |0 (OCoLC)fst00871995 
650 7 |a Engineering.  |2 fast  |0 (OCoLC)fst00910312 
650 7 |a Proteins.  |2 fast  |0 (OCoLC)fst01079711 
655 4 |a Electronic books. 
700 1 |a Das, Swagatam,  |e author. 
700 1 |a Sil, Jaya,  |e author. 
776 0 8 |i Printed edition:  |z 9783319747743  |w (OCoLC)1017604414 
830 0 |a Emergence, complexity and computation ;  |v 31.  |x 2194-7287  |0 http://id.loc.gov/authorities/names/no2012159814 
903 |a HeVa 
929 |a oclccm 
999 f f |i 5b4ad2c9-c322-5465-ab5b-51721393f029  |s 24cb7219-9a89-5f7b-bab1-a9b528bbfa14 
928 |t Library of Congress classification  |a QP551 .J35 2018  |l Online  |c UC-FullText  |u https://link.springer.com/10.1007/978-3-319-74775-0  |z Springer Nature  |g ebooks  |i 12552923