X-ray diffraction imaging of biological cells /

Saved in:
Bibliographic Details
Author / Creator:Nakasako, Masayoshi, author.
Imprint:Tokyo, Japan : Springer, 2018.
Description:1 online resource (xx, 228 pages) : illustrations (some color)
Language:English
Series:Springer series in optical sciences, 0342-4111 ; volume 210
Springer series in optical sciences ; v. 210.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11544255
Hidden Bibliographic Details
ISBN:9784431566182
443156618X
9784431566168
4431566163
Digital file characteristics:text file PDF
Notes:Includes bibliographical references and index.
Online resource; title from PDF title page (SpringerLink, viewed April 4, 2018).
Summary:In this book, the author describes the development of the experimental diffraction setup and structural analysis of non-crystalline particles from material science and biology. Recent advances in X-ray free electron laser (XFEL)-coherent X-ray diffraction imaging (CXDI) experiments allow for the structural analysis of non-crystalline particles to a resolution of 7 nm, and to a resolution of 20 nm for biological materials. Now XFEL-CXDI marks the dawn of a new era in structural analys of non-crystalline particles with dimensions larger than 100 nm, which was quite impossible in the 20th century. To conduct CXDI experiments in both synchrotron and XFEL facilities, the author has developed apparatuses, named KOTOBUKI-1 and TAKASAGO-6 for cryogenic diffraction experiments on frozen-hydrated non-crystalline particles at around 66 K. At the synchrotron facility, cryogenic diffraction experiments dramatically reduce radiation damage of specimen particles and allow tomography CXDI experiments. In addition, in XFEL experiments, non-crystalline particles scattered on thin support membranes and flash-cooled can be used to efficiently increase the rate of XFEL pulses. The rate, which depends on the number density of scattered particles and the size of X-ray beams, is currently 20-90%, probably the world record in XFEL-CXDI experiments. The experiment setups and results are introduced in this book. The author has also developed software suitable for efficiently processing of diffraction patterns and retrieving electron density maps of specimen particles based on the diffraction theory used in CXDI.
Other form:Print version: Nakasako, Masayoshi. X-ray diffraction imaging of biological cells. Tokyo, Japan : Springer, 2018 4431566163 9784431566168
Standard no.:10.1007/978-4-431-56618-2

MARC

LEADER 00000cam a2200000Ii 4500
001 11544255
005 20210625184043.7
006 m o d
007 cr cnu|||unuuu
008 180404s2018 ja a ob 001 0 eng d
015 |a GBB965809  |2 bnb 
016 7 |a 019321057  |2 Uk 
019 |a 1030448143  |a 1030612875  |a 1030765367  |a 1030815043  |a 1033650157  |a 1048139151  |a 1058894803  |a 1059222412  |a 1066468474  |a 1084426089 
020 |a 9784431566182  |q (electronic bk.) 
020 |a 443156618X  |q (electronic bk.) 
020 |z 9784431566168  |q (print) 
020 |z 4431566163 
024 7 |a 10.1007/978-4-431-56618-2  |2 doi 
035 |a (OCoLC)1030411764  |z (OCoLC)1030448143  |z (OCoLC)1030612875  |z (OCoLC)1030765367  |z (OCoLC)1030815043  |z (OCoLC)1033650157  |z (OCoLC)1048139151  |z (OCoLC)1058894803  |z (OCoLC)1059222412  |z (OCoLC)1066468474  |z (OCoLC)1084426089 
035 9 |a (OCLCCM-CC)1030411764 
037 |a com.springer.onix.9784431566182  |b Springer Nature 
040 |a GW5XE  |b eng  |e rda  |e pn  |c GW5XE  |d YDX  |d OCLCF  |d UPM  |d AZU  |d MERER  |d OCLCQ  |d JG0  |d OCLCQ  |d STF  |d VT2  |d U3W  |d SNK  |d AU@  |d CNCEN  |d EBLCP  |d WYU  |d OCLCQ  |d LVT  |d CAUOI  |d COO  |d UKMGB  |d OCLCQ  |d LEAUB  |d OCLCQ 
049 |a MAIN 
050 4 |a QC482.D5 
072 7 |a TTBL  |2 bicssc 
072 7 |a TEC019000  |2 bisacsh 
100 1 |a Nakasako, Masayoshi,  |e author. 
245 1 0 |a X-ray diffraction imaging of biological cells /  |c Masayoshi Nakasako. 
264 1 |a Tokyo, Japan :  |b Springer,  |c 2018. 
300 |a 1 online resource (xx, 228 pages) :  |b illustrations (some color) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer series in optical sciences,  |x 0342-4111 ;  |v volume 210 
504 |a Includes bibliographical references and index. 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed April 4, 2018). 
505 0 |a Introduction -- X-ray diffraction -- Theory of X-ray diffraction imaging -- Diffraction apparatus for X-ray diffraction imaging -- Specimen preparation for X-ray diffraction imaging experiments at cryogenic temperature -- Processing of diffraction patterns obtained from X-ray diffraction imaging experiments using X-ray free electron laser pulses.- Phase retrieval of diffraction patterns -- Projection structures of biological cells and organelles -- Three-dimensional structural analyses in cryogenic X-ray diffraction imaging -- Prospects for the structural analysis of biological specimens by X-ray diffraction imaging. 
520 |a In this book, the author describes the development of the experimental diffraction setup and structural analysis of non-crystalline particles from material science and biology. Recent advances in X-ray free electron laser (XFEL)-coherent X-ray diffraction imaging (CXDI) experiments allow for the structural analysis of non-crystalline particles to a resolution of 7 nm, and to a resolution of 20 nm for biological materials. Now XFEL-CXDI marks the dawn of a new era in structural analys of non-crystalline particles with dimensions larger than 100 nm, which was quite impossible in the 20th century. To conduct CXDI experiments in both synchrotron and XFEL facilities, the author has developed apparatuses, named KOTOBUKI-1 and TAKASAGO-6 for cryogenic diffraction experiments on frozen-hydrated non-crystalline particles at around 66 K. At the synchrotron facility, cryogenic diffraction experiments dramatically reduce radiation damage of specimen particles and allow tomography CXDI experiments. In addition, in XFEL experiments, non-crystalline particles scattered on thin support membranes and flash-cooled can be used to efficiently increase the rate of XFEL pulses. The rate, which depends on the number density of scattered particles and the size of X-ray beams, is currently 20-90%, probably the world record in XFEL-CXDI experiments. The experiment setups and results are introduced in this book. The author has also developed software suitable for efficiently processing of diffraction patterns and retrieving electron density maps of specimen particles based on the diffraction theory used in CXDI. 
650 0 |a X-rays  |x Diffraction.  |0 http://id.loc.gov/authorities/subjects/sh85148750 
650 0 |a Cells  |x Imaging. 
650 0 |a X-ray microscopy.  |0 http://id.loc.gov/authorities/subjects/sh92003381 
650 7 |a X-ray microscopy.  |2 fast  |0 (OCoLC)fst01181839 
650 7 |a X-rays  |x Diffraction.  |2 fast  |0 (OCoLC)fst01181858 
655 0 |a Electronic books. 
655 4 |a Electronic books. 
776 0 8 |i Print version:  |a Nakasako, Masayoshi.  |t X-ray diffraction imaging of biological cells.  |d Tokyo, Japan : Springer, 2018  |z 4431566163  |z 9784431566168  |w (OCoLC)1015793880 
830 0 |a Springer series in optical sciences ;  |v v. 210.  |x 0342-4111  |0 http://id.loc.gov/authorities/names/n42023186 
903 |a HeVa 
929 |a oclccm 
999 f f |i 3237e4d6-e43a-5f23-9157-443165ce4eed  |s 28b139da-cb2e-52e0-bc19-e83f7431fc63 
928 |t Library of Congress classification  |a QC482.D5  |l Online  |c UC-FullText  |u https://link.springer.com/10.1007/978-4-431-56618-2  |z Springer Nature  |g ebooks  |i 12553749