Degenerate complex Monge--Ampère equations /

Saved in:
Bibliographic Details
Author / Creator:Guedj, Vincent, author.
Imprint:Zürich, Switzerland : European Mathematical Society Publishing House, [2017]
Description:1 online resource (xxiv, 472 pages) : illustrations.
Language:English
Series:EMS tracts in mathematics ; 26
EMS tracts in mathematics ; 26.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11549170
Hidden Bibliographic Details
Other authors / contributors:Zeriahi, Ahmed.
ISBN:9783037196670
303719667X
9783037191675
Summary:Winner of the 2016 EMS Monograph Award! Complex Monge-Ampère equations have been one of the most powerful tools in Kähler geometry since Aubin and Yau's classical works, culminating in Yau's solution to the Calabi conjecture. A notable application is the construction of Kähler-Einstein metrics on some compact Kähler manifolds. In recent years degenerate complex Monge-Ampère equations have been intensively studied, requiring more advanced tools. The main goal of this book is to give a self-contained presentation of the recent developments of pluripotential theory on compact Kähler manifolds and its application to Kähler-Einstein metrics on mildly singular varieties. After reviewing basic properties of plurisubharmonic functions, Bedford-Taylor's local theory of complex Monge-Ampère measures is developed. In order to solve degenerate complex Monge-Ampère equations on compact Kähler manifolds, fine properties of quasi-plurisubharmonic functions are explored, classes of finite energies defined and various maximum principles established. After proving Yau's celebrated theorem as well as its recent generalizations, the results are then used to solve the (singular) Calabi conjecture and to construct (singular) Kähler-Einstein metrics on some varieties with mild singularities. The book is accessible to advanced students and researchers of complex analysis and differential geometry.

MARC

LEADER 00000cam a2200000Ii 4500
001 11549170
006 m o d
007 cr cnu|||unuuu
008 170103s2017 sz a o 000 0 eng d
005 20240514211533.9
020 |a 9783037196670  |q (electronic bk.) 
020 |a 303719667X  |q (electronic bk.) 
020 |z 9783037191675 
035 |a (OCoLC)967512080 
035 9 |a (OCLCCM-CC)967512080 
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d LLB  |d HMG  |d N$T  |d OCLCF  |d BTCTA  |d YDX  |d STF  |d COO  |d OTZ  |d NAM  |d AGLDB  |d IGB  |d CN8ML  |d SNK  |d INTCL  |d MHW  |d BTN  |d AUW  |d OCLCQ  |d VTS  |d OCLCQ  |d D6H  |d WYU  |d G3B  |d S8I  |d S8J  |d S9I 
049 |a MAIN 
050 4 |a QA377 
072 7 |a MAT  |x 007020  |2 bisacsh 
084 |a 32-xx  |2 msc 
100 1 |a Guedj, Vincent,  |e author.  |0 http://id.loc.gov/authorities/names/nb2012002281 
245 1 0 |a Degenerate complex Monge--Ampère equations /  |c Vincent Guedj, Ahmed Zeriahi. 
264 1 |a Zürich, Switzerland :  |b European Mathematical Society Publishing House,  |c [2017] 
300 |a 1 online resource (xxiv, 472 pages) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a EMS tracts in mathematics ;  |v 26 
520 |a Winner of the 2016 EMS Monograph Award! Complex Monge-Ampère equations have been one of the most powerful tools in Kähler geometry since Aubin and Yau's classical works, culminating in Yau's solution to the Calabi conjecture. A notable application is the construction of Kähler-Einstein metrics on some compact Kähler manifolds. In recent years degenerate complex Monge-Ampère equations have been intensively studied, requiring more advanced tools. The main goal of this book is to give a self-contained presentation of the recent developments of pluripotential theory on compact Kähler manifolds and its application to Kähler-Einstein metrics on mildly singular varieties. After reviewing basic properties of plurisubharmonic functions, Bedford-Taylor's local theory of complex Monge-Ampère measures is developed. In order to solve degenerate complex Monge-Ampère equations on compact Kähler manifolds, fine properties of quasi-plurisubharmonic functions are explored, classes of finite energies defined and various maximum principles established. After proving Yau's celebrated theorem as well as its recent generalizations, the results are then used to solve the (singular) Calabi conjecture and to construct (singular) Kähler-Einstein metrics on some varieties with mild singularities. The book is accessible to advanced students and researchers of complex analysis and differential geometry. 
650 0 |a Monge-Ampère equations.  |0 http://id.loc.gov/authorities/subjects/sh85086814 
650 0 |a Pluripotential theory.  |0 http://id.loc.gov/authorities/subjects/sh91003359 
650 0 |a Plurisubharmonic functions.  |0 http://id.loc.gov/authorities/subjects/sh89000973 
650 7 |a MATHEMATICS  |x Differential Equations  |x Partial.  |2 bisacsh 
650 0 7 |a Complex analysis.  |2 bicssc 
650 7 |a Monge-Ampère equations.  |2 fast  |0 (OCoLC)fst01025360 
650 7 |a Pluripotential theory.  |2 fast  |0 (OCoLC)fst01067421 
650 7 |a Plurisubharmonic functions.  |2 fast  |0 (OCoLC)fst01067422 
650 0 7 |a Several complex variables and analytic spaces.  |2 msc 
655 4 |a Electronic books. 
700 1 |a Zeriahi, Ahmed.  |0 http://id.loc.gov/authorities/names/no2017062491 
830 0 |a EMS tracts in mathematics ;  |v 26.  |0 http://id.loc.gov/authorities/names/no2007089164 
903 |a HeVa 
929 |a oclccm 
999 f f |i b473b932-4584-59b2-8ec9-52831e3ecffa  |s 53803778-d37d-5cc9-af22-baf1c1989562 
928 |t Library of Congress classification  |a QA377  |l Online  |c UC-FullText  |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=e000xna&AN=1445461  |z eBooks on EBSCOhost  |g ebooks  |i 12447643