Assemblies of gold nanoparticles at liquid-liquid interfaces : from liquid optics to electrocatalysis /

Saved in:
Bibliographic Details
Author / Creator:Smirnov, Evgeny, author.
Imprint:Cham, Switzerland : Springer, [2018]
©2018
Description:1 online resource
Language:English
Series:Springer theses
Springer theses.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11654450
Hidden Bibliographic Details
ISBN:9783319779140
3319779141
9783319779133
3319779133
9783319779133
Digital file characteristics:PDF
text file
Notes:"Doctoral thesis accepted by the Swiss Federa; Institute of Technology, Lausanne, Switzerland."
Includes bibliographical references.
Online resource; title from PDF title page (SpringerLink, viewed April 25, 2018).
Summary:This book is devoted to various aspects of self-assembly of gold nanoparticles at liquid-liquid interfaces and investigation of their properties. It covers primarily two large fields: (i) self-assembly of nanoparticles and optical properties of these assemblies; and (ii) the role of nanoparticles in redox electrocatalysis at liquid-liquid interfaces. The first part aroused from a long-lasting idea to manipulate adsorption of nanoparticles at liquid-liquid with an external electric field to form 'smart' mirrors and/or filters. Therefore, Chapters 3 to 5 are dedicated to explore fundamental aspects of charged nanoparticles self-assembly and to investigate optical properties (extinction and reflectance) in a through manner. Novel tetrathiafulvalene (TTF)-assisted method leads to self-assembly of nanoparticles into cm-scale nanofilms or, so-called, metal liquid-like droplets (MeLLDs) with remarkable optical properties. The second part (Chapters 6 to 8) clarifies the role of nanoparticles in interfacial electron transfer reactions. They demonstrate how nanoparticles are charged and discharged upon equilibration of Fermi levels with redox couples in solution and how it can be used to perform HER and ORR. Finally, chapter 9 gives a perspective outlook, including applications of suggested methods in fast, one-step preparation of colloidosomes, SERS substrates as well as pioneer studies on so-called Marangony-type shutters drive by the electric field.
Other form:Printed edition: 9783319779133
Standard no.:10.1007/978-3-319-77914-0

MARC

LEADER 00000cam a2200000Ii 4500
001 11654450
005 20210625185157.6
006 m o d
007 cr cnu|||unuuu
008 180424t20182018sz ob 000 0 eng d
015 |a GBB8N9041  |2 bnb 
016 7 |a 019170762  |2 Uk 
019 |a 1032575875  |a 1032660944  |a 1034547210  |a 1038440883  |a 1048209816  |a 1059244417  |a 1066608031  |a 1081211372  |a 1105185437  |a 1113449978  |a 1117177443  |a 1122846267  |a 1160061521  |a 1162757319 
020 |a 9783319779140  |q (electronic bk.) 
020 |a 3319779141  |q (electronic bk.) 
020 |z 9783319779133  |q (print) 
020 |a 3319779133 
020 |a 9783319779133 
024 7 |a 10.1007/978-3-319-77914-0  |2 doi 
035 |a (OCoLC)1032070699  |z (OCoLC)1032575875  |z (OCoLC)1032660944  |z (OCoLC)1034547210  |z (OCoLC)1038440883  |z (OCoLC)1048209816  |z (OCoLC)1059244417  |z (OCoLC)1066608031  |z (OCoLC)1081211372  |z (OCoLC)1105185437  |z (OCoLC)1113449978  |z (OCoLC)1117177443  |z (OCoLC)1122846267  |z (OCoLC)1160061521  |z (OCoLC)1162757319 
035 9 |a (OCLCCM-CC)1032070699 
037 |n Title purchased via APUC SHEDL / ScopNet ebook agreement  |n Chemistry and Materials Science (Springer-11644) 
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d GW5XE  |d N$T  |d EBLCP  |d AZU  |d UPM  |d UAB  |d OCLCF  |d OCLCQ  |d MERER  |d OCLCQ  |d VT2  |d U3W  |d SNK  |d LVT  |d CNCEN  |d WYU  |d OCLCQ  |d CAUOI  |d UKAHL  |d LQU  |d OCLCQ  |d ADU  |d LEATE  |d OCLCQ  |d YDX  |d AU@  |d UKMGB  |d OCLCQ 
049 |a MAIN 
050 4 |a QA475 
066 |c (S 
072 7 |a SCI  |x 013040  |2 bisacsh 
072 7 |a TBN  |2 bicssc 
100 1 |a Smirnov, Evgeny,  |e author. 
245 1 0 |a Assemblies of gold nanoparticles at liquid-liquid interfaces :  |b from liquid optics to electrocatalysis /  |c Evgeny Smirnov. 
264 1 |a Cham, Switzerland :  |b Springer,  |c [2018] 
264 4 |c ©2018 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |b PDF 
347 |a text file 
490 1 |a Springer theses 
504 |a Includes bibliographical references. 
500 |a "Doctoral thesis accepted by the Swiss Federa; Institute of Technology, Lausanne, Switzerland." 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed April 25, 2018). 
505 0 |6 880-01  |a Intro; Supervisor's Foreword; Parts of this thesis have been published in the following journal articles:; Acknowledgements; Contents; Abbreviations; Symbols; 1 Introduction; 1.1 Liquid-Liquid Interfaces: Structure and Galvani Potential Difference; 1.1.1 Structure of Liquid-Liquid Interfaces; 1.1.2 Thermodynamics of Electron and Ion Transfer Reactions Across ITIES. BATB Assumption; 1.2 Equilibration of the Fermi Levels; 1.2.1 Equilibration of Fermi Level Between NPs and Species in Solution; 1.2.2 Electron Transfer at a Liquid-Liquid Interface (LLI). 
505 8 |a 1.3 Gold Nanoparticles: Synthesis and Properties1.3.1 Short Review on AuNPs Synthesis; 1.3.2 Synthetic Details and Structure of Citrate-Stabilized AuNPs; 1.3.3 "Free Electrons Gas" Model and Optical Properties of Metal Nanoparticles; 1.4 Self-assembly of Nano- and Microparticles at Liquid Interfaces; 1.4.1 Theoretical Clues on Interaction Between a Single Particle and a Liquid-Liquid Interface; 1.4.2 Wetting Properties: Nano Versus Macro; 1.4.3 Review on Practical Methods to Settle Particles at Liquid-Liquid or Liquid-Air Interfaces. 
505 8 |a 2.2.4 X-Ray Photoluminescence Spectroscopy2.2.5 Interfacial Raman Microscopy; 2.2.6 Electrochemical Measurements; 2.2.7 Drop Shape Analysis; 2.3 Synthesis of Aqueous Colloidal AuNP Solution; 2.3.1 Turkevich-Frens Method; 2.3.2 Seed-Mediated Growth; 2.4 AuNP Size Distributions and Concentrations; 2.4.1 Theoretical Aspects; 2.4.2 Practical Aspects; 2.5 Gold Metal Liquid-Like Droplets (MeLLDs): Preparation and Surface Coverage Evaluation; 2.5.1 MeLLDs Preparation Procedure; 2.5.2 The Droplet Surface Area and Estimation of the Surface Coverage. 
505 8 |a 2.6 Modifying a Soft Interface with a Flat AuNP Nanofilm Inside a Four-Electrode Electrochemical Cell2.7 "Shake-Flask" Experiments to Quantify Biphasic H2O2 Generation; Appendixes; Sec22; References; 3 Self-Assembly of Nanoparticles into Gold Metal Liquid-like Droplets (MeLLDs); 3.1 Introduction; 3.2 Results and Discussion; 3.2.1 Optical Characterization of Gold MeLLDs; 3.2.2 Investigating the Conductivity of Gold MeLLDs; 3.2.3 Gold MeLLD Formation Mechanism; 3.2.4 To the Question of Wetting Properties; 3.2.5 Self-healing Nature and Mechanical Properties; 3.3 Conclusions; References. 
520 |a This book is devoted to various aspects of self-assembly of gold nanoparticles at liquid-liquid interfaces and investigation of their properties. It covers primarily two large fields: (i) self-assembly of nanoparticles and optical properties of these assemblies; and (ii) the role of nanoparticles in redox electrocatalysis at liquid-liquid interfaces. The first part aroused from a long-lasting idea to manipulate adsorption of nanoparticles at liquid-liquid with an external electric field to form 'smart' mirrors and/or filters. Therefore, Chapters 3 to 5 are dedicated to explore fundamental aspects of charged nanoparticles self-assembly and to investigate optical properties (extinction and reflectance) in a through manner. Novel tetrathiafulvalene (TTF)-assisted method leads to self-assembly of nanoparticles into cm-scale nanofilms or, so-called, metal liquid-like droplets (MeLLDs) with remarkable optical properties. The second part (Chapters 6 to 8) clarifies the role of nanoparticles in interfacial electron transfer reactions. They demonstrate how nanoparticles are charged and discharged upon equilibration of Fermi levels with redox couples in solution and how it can be used to perform HER and ORR. Finally, chapter 9 gives a perspective outlook, including applications of suggested methods in fast, one-step preparation of colloidosomes, SERS substrates as well as pioneer studies on so-called Marangony-type shutters drive by the electric field. 
650 0 |a Self-assembly (Chemistry)  |0 http://id.loc.gov/authorities/subjects/sh00005345 
650 0 |a Liquid-liquid interfaces.  |0 http://id.loc.gov/authorities/subjects/sh96000001 
650 0 |a Gold.  |0 http://id.loc.gov/authorities/subjects/sh85055692 
650 0 |a Nanoparticles.  |0 http://id.loc.gov/authorities/subjects/sh85089689 
650 7 |a SCIENCE  |x Chemistry  |x Organic.  |2 bisacsh 
650 7 |a Gold.  |2 fast  |0 (OCoLC)fst00944368 
650 7 |a Liquid-liquid interfaces.  |2 fast  |0 (OCoLC)fst00999667 
650 7 |a Nanoparticles.  |2 fast  |0 (OCoLC)fst01032624 
650 7 |a Self-assembly (Chemistry)  |2 fast  |0 (OCoLC)fst01111504 
650 2 4 |a Catalysis. 
650 7 |a Testing of materials.  |2 bicssc 
650 7 |a Electrochemistry & magnetochemistry.  |2 bicssc 
650 7 |a Catalysis.  |2 bicssc 
650 7 |a Nanotechnology.  |2 bicssc 
655 4 |a Electronic books. 
776 0 8 |i Printed edition:  |z 9783319779133 
830 0 |a Springer theses.  |0 http://id.loc.gov/authorities/names/no2010186160 
880 8 |6 505-01/(S  |a 1.4.4 Potential Applications of Nanoparticles Assemblies at LLIAppendixes; Appendix I. Mathematica Code to Calculate the Fermi Level of Nanoparticles; Appendix II. Mathematica Code to Implement Mie Theory; Appendix III. Flatte's Model Without an External Electric Field; Appendix IV. DLVO Theory: Forces Between Nanoparticles in Assemblies at LLI; References; 2 Experimental and Instrumentation; 2.1 Reagents; 2.2 Instrumental Methods; 2.2.1 Electron Microscopy (SEM and TEM); 2.2.2 Dynamic Light Scattering (DLS) and Zeta(ζ)-Potential Measurements; 2.2.3 UV-Vis Spectroscopy. 
903 |a HeVa 
929 |a oclccm 
999 f f |i 0d40290a-4609-5848-8ce3-9bc5277cda45  |s 07fed5c5-2de8-54e3-8bbf-741652fabbd6 
928 |t Library of Congress classification  |a QA475  |l Online  |c UC-FullText  |u https://link.springer.com/10.1007/978-3-319-77914-0  |z Springer Nature  |g ebooks  |i 12554091