Linear algebra and analytic geometry for physical sciences /

Saved in:
Bibliographic Details
Author / Creator:Landi, Giovanni, 1959- author.
Imprint:Cham, Switzerland : Springer, 2018.
Description:1 online resource (xii, 345 pages)
Language:English
Series:Undergraduate lecture notes in physics, 2192-4791
Undergraduate lecture notes in physics,
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11654878
Hidden Bibliographic Details
Other authors / contributors:Zampini, Alessandro, author.
ISBN:9783319783611
3319783610
9783319783604
3319783602
Digital file characteristics:text file
PDF
Notes:Includes index.
Online resource; title from PDF title page (SpringerLink, viewed May 14, 2018).
Summary:A self-contained introduction to finite dimensional vector spaces, matrices, systems of linear equations, spectral analysis on euclidean and hermitian spaces, affine euclidean geometry, quadratic forms and conic sections. The mathematical formalism is motivated and introduced by problems from physics, notably mechanics (including celestial) and electro-magnetism, with more than two hundreds examples and solved exercises. Topics include: The group of orthogonal transformations on euclidean spaces, in particular rotations, with Euler angles and angular velocity. The rigid body with its inertia matrix. The unitary group. Lie algebras and exponential map. The Dirac's bra-ket formalism. Spectral theory for self-adjoint endomorphisms on euclidean and hermitian spaces. The Minkowski spacetime from special relativity and the Maxwell equations. Conic sections with the use of eccentricity and Keplerian motions. An appendix collects basic algebraic notions like group, ring and field; and complex numbers and integers modulo a prime number. The book will be useful to students taking a physics or engineer degree for a basic education as well as for students who wish to be competent in the subject and who may want to pursue a post-graduate qualification.
Other form:Print version: Landi, Giovanni, 1959- Linear algebra and analytic geometry for physical sciences. Cham, Switzerland : Springer, 2018 3319783602 9783319783604
Standard no.:10.1007/978-3-319-78361-1

MARC

LEADER 00000cam a2200000Ii 4500
001 11654878
006 m o d
007 cr cnu|||unuuu
008 180514s2018 sz o 001 0 eng d
005 20240709212411.7
015 |a GBB8M3836  |2 bnb 
016 7 |a 019138624  |2 Uk 
019 |a 1036771825  |a 1047637879  |a 1055385330  |a 1058807849  |a 1084339045  |a 1096213998  |a 1113451821  |a 1154183369  |a 1160103001  |a 1162793263  |a 1204061589 
020 |a 9783319783611  |q (electronic bk.) 
020 |a 3319783610  |q (electronic bk.) 
020 |z 9783319783604  |q (print) 
020 |z 3319783602 
024 7 |a 10.1007/978-3-319-78361-1  |2 doi 
035 |a (OCoLC)1035556835  |z (OCoLC)1036771825  |z (OCoLC)1047637879  |z (OCoLC)1055385330  |z (OCoLC)1058807849  |z (OCoLC)1084339045  |z (OCoLC)1096213998  |z (OCoLC)1113451821  |z (OCoLC)1154183369  |z (OCoLC)1160103001  |z (OCoLC)1162793263  |z (OCoLC)1204061589 
035 9 |a (OCLCCM-CC)1035556835 
037 |a com.springer.onix.9783319783611  |b Springer Nature 
040 |a GW5XE  |b eng  |e rda  |e pn  |c GW5XE  |d YDX  |d AZU  |d UAB  |d OCLCF  |d OCLCQ  |d UPM  |d MERER  |d STF  |d VT2  |d OCLCQ  |d U3W  |d SNK  |d CNCEN  |d AU@  |d WYU  |d OCLCQ  |d LVT  |d UKMGB  |d CAUOI  |d LEAUB  |d OCLCQ  |d ADU  |d UKAHL  |d EBLCP  |d N$T  |d OCLCQ 
049 |a MAIN 
050 4 |a QA184.2 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
100 1 |a Landi, Giovanni,  |d 1959-  |e author.  |0 http://id.loc.gov/authorities/names/n97089400 
245 1 0 |a Linear algebra and analytic geometry for physical sciences /  |c Giovanni Landi, Alessandro Zampini. 
264 1 |a Cham, Switzerland :  |b Springer,  |c 2018. 
300 |a 1 online resource (xii, 345 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
347 |b PDF 
490 1 |a Undergraduate lecture notes in physics,  |x 2192-4791 
500 |a Includes index. 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed May 14, 2018). 
505 0 |a Introduction -- Vectors and coordinate systems -- Vector spaces -- Euclidean vector spaces -- Matrices -- The determinant -- Systems of linear equations -- Linear transformations -- Dual spaces -- Endomorphisms and diagonalization -- Spectral theorems on euclidean spaces -- Rotations -- Spectral theorems on hermitian spaces -- Quadratic forms -- Affine linear geometry -- Euclidean affine linear geometry -- Conic sections -- A Algebraic Structures -- A.1 A few notions of Set Theory -- A.2 Groups -- A.3 Rings and Fields -- A.4 Maps between algebraic structures -- A5 Complex numbers -- A.6 Integers modulo a prime number. 
520 |a A self-contained introduction to finite dimensional vector spaces, matrices, systems of linear equations, spectral analysis on euclidean and hermitian spaces, affine euclidean geometry, quadratic forms and conic sections. The mathematical formalism is motivated and introduced by problems from physics, notably mechanics (including celestial) and electro-magnetism, with more than two hundreds examples and solved exercises. Topics include: The group of orthogonal transformations on euclidean spaces, in particular rotations, with Euler angles and angular velocity. The rigid body with its inertia matrix. The unitary group. Lie algebras and exponential map. The Dirac's bra-ket formalism. Spectral theory for self-adjoint endomorphisms on euclidean and hermitian spaces. The Minkowski spacetime from special relativity and the Maxwell equations. Conic sections with the use of eccentricity and Keplerian motions. An appendix collects basic algebraic notions like group, ring and field; and complex numbers and integers modulo a prime number. The book will be useful to students taking a physics or engineer degree for a basic education as well as for students who wish to be competent in the subject and who may want to pursue a post-graduate qualification. 
650 0 |a Algebras, Linear.  |0 http://id.loc.gov/authorities/subjects/sh85003441 
650 0 |a Geometry, Analytic.  |0 http://id.loc.gov/authorities/subjects/sh85054141 
650 7 |a Algebra.  |2 bicssc 
650 7 |a Maths for engineers.  |2 bicssc 
650 7 |a Geometry.  |2 bicssc 
650 7 |a Maths for computer scientists.  |2 bicssc 
650 7 |a Mathematical modelling.  |2 bicssc 
650 7 |a Mathematical physics.  |2 bicssc 
650 7 |a Mathematics  |x Algebra  |x Linear.  |2 bisacsh 
650 7 |a Mathematics  |x Applied.  |2 bisacsh 
650 7 |a Mathematics  |x Geometry  |x General.  |2 bisacsh 
650 7 |a Computers  |x Data Processing.  |2 bisacsh 
650 7 |a Science  |x Mathematical Physics.  |2 bisacsh 
650 7 |a Algebras, Linear.  |2 fast  |0 (OCoLC)fst00804946 
650 7 |a Geometry, Analytic.  |2 fast  |0 (OCoLC)fst00940905 
655 4 |a Electronic books. 
700 1 |a Zampini, Alessandro,  |e author. 
776 0 8 |i Print version:  |a Landi, Giovanni, 1959-  |t Linear algebra and analytic geometry for physical sciences.  |d Cham, Switzerland : Springer, 2018  |z 3319783602  |z 9783319783604  |w (OCoLC)1024243294 
830 0 |a Undergraduate lecture notes in physics,  |x 2192-4791  |0 http://id.loc.gov/authorities/names/no2012021382 
903 |a HeVa 
929 |a oclccm 
999 f f |i cfc29497-2121-52ba-b20b-3e177418b789  |s 1e4fa8d9-c1ba-51cb-80c8-eb91456b189b 
928 |t Library of Congress classification  |a QA184.2  |l Online  |c UC-FullText  |u https://link.springer.com/10.1007/978-3-319-78361-1  |z Springer Nature  |g ebooks  |i 12553514