Cis/transgene optimization : systematic discovery of novel gene expression elements using bioinformatics and computational biology approaches /

Saved in:
Bibliographic Details
Author / Creator:Kadkhodaei, Saeid, author.
Imprint:Cham, Switzerland : Springer, [2018]
Description:1 online resource
Language:English
Series:SpringerBriefs in systems biology
SpringerBriefs in systems biology.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11655125
Hidden Bibliographic Details
ISBN:9783319903910
3319903918
9783319903927
3319903926
331990390X
9783319903903
Digital file characteristics:text file PDF
Notes:Includes bibliographical references and index.
Online resource; title from digital title page (viewed on July 19, 2018).
Summary:This book is a practical review which focuses on computational analysis and on in silicoapproaches towards the systematic discovery of various key functional gene expression elements in microalgae as a model. So far, in this regard very little information is available. Efficient stepwise procedures for analysing the matrix attachment regions (MARs) are outlined, as well as for translation initiation sites (TIS), signal peptide (SP) sequences, gene optimization and transformation systems. These outlines can be efficiently deployed as practical models for the systematic discovery of key expression elements and for the optimization of cis/transgenes in other micro/organisms. The first chapter is an introduction on the key gene expression elements analysed in this book, including scaffold/matrix attachment regions, translation initiation sites, signal peptides as well as gene optimization. Chapter 2 focuses on systematic strategies and computational approaches toward in silico analysis of each factor. The analyses outcomes is assessed individually in chapter 3 followed by developing the specific conceptual models for each element in Chapter 4. The concluding remarks are discussed in Chapter 5. This work is of interest to computational and experimental biologists interested in transcriptional regulation analysis as well as to researchers and scientists who wish to consider the use of bioinformatics and computational biology in design, analysis, or regulatory reviews of key gene expression elements for the production of recombinant proteins experiments.
Other form:Print version: CIS/TRANSGENE OPTIMIZATION. [Place of publication not identified] : SPRINGER INTERNATIONAL PU, 2018 331990390X 9783319903903
Standard no.:10.1007/978-3-319-90391-0
10.1007/978-3-319-90

MARC

LEADER 00000cam a2200000Mi 4500
001 11655125
005 20210625184335.5
006 m o d
007 cr cnu---unuuu
008 180522s2018 sz ob 001 0 eng d
015 |a GBB8N9191  |2 bnb 
016 7 |a 019170935  |2 Uk 
019 |a 1036735521  |a 1040612535  |a 1044868214  |a 1044938559  |a 1045191658  |a 1047624248  |a 1055370418  |a 1059250917  |a 1081256135  |a 1097109933  |a 1105170318  |a 1111238011  |a 1113387082  |a 1116104330  |a 1122816035  |a 1125773061  |a 1136479033  |a 1144437283  |a 1160048054  |a 1162518325  |a 1162714354 
020 |a 9783319903910  |q (electronic book) 
020 |a 3319903918  |q (electronic book) 
020 |a 9783319903927  |q (print) 
020 |a 3319903926 
020 |z 331990390X 
020 |z 9783319903903 
024 7 |a 10.1007/978-3-319-90391-0  |2 doi 
024 8 |a 10.1007/978-3-319-90 
035 |a (OCoLC)1037007590  |z (OCoLC)1036735521  |z (OCoLC)1040612535  |z (OCoLC)1044868214  |z (OCoLC)1044938559  |z (OCoLC)1045191658  |z (OCoLC)1047624248  |z (OCoLC)1055370418  |z (OCoLC)1059250917  |z (OCoLC)1081256135  |z (OCoLC)1097109933  |z (OCoLC)1105170318  |z (OCoLC)1111238011  |z (OCoLC)1113387082  |z (OCoLC)1116104330  |z (OCoLC)1122816035  |z (OCoLC)1125773061  |z (OCoLC)1136479033  |z (OCoLC)1144437283  |z (OCoLC)1160048054  |z (OCoLC)1162518325  |z (OCoLC)1162714354 
035 9 |a (OCLCCM-CC)1037007590 
037 |a com.springer.onix.9783319903910  |b Springer Nature 
040 |a YDX  |b eng  |e rda  |e pn  |c YDX  |d N$T  |d GW5XE  |d EBLCP  |d UAB  |d OCLCF  |d OCLCQ  |d MERER  |d YDX  |d STF  |d AZU  |d UPM  |d VT2  |d OCLCQ  |d COO  |d U3W  |d OCLCQ  |d CNCEN  |d WYU  |d UKMGB  |d CAUOI  |d OCLCQ  |d UKAHL  |d LQU  |d OCLCQ  |d ADU  |d LEATE  |d OCLCQ 
049 |a MAIN 
050 4 |a TP248.65.P76  |b K33 2018 
072 7 |a SCI  |x 013060  |2 bisacsh 
072 7 |a TEC  |x 009010  |2 bisacsh 
072 7 |a PS  |2 bicssc 
072 7 |a UB  |2 bicssc 
072 7 |a PS  |2 thema 
072 7 |a UB  |2 thema 
100 1 |a Kadkhodaei, Saeid,  |e author. 
245 1 0 |a Cis/transgene optimization :  |b systematic discovery of novel gene expression elements using bioinformatics and computational biology approaches /  |c Saeid Kadkhodaei, [and 10 others]. 
264 1 |a Cham, Switzerland :  |b Springer,  |c [2018] 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in systems biology 
504 |a Includes bibliographical references and index. 
505 0 |a Intro; Preface; Acknowledgements; Contents; Acronyms; 1 Introduction; 1.1 Overview; 1.2 Scaffold/Matrix Attachment Regions (S/MARs); 1.3 Translation Initiation Site (TIS); 1.4 Signal Peptides; 1.5 Gene Optimization; References; 2 Systematic Strategies; 2.1 MARs (Fig. 2.1a); 2.1.1 S/MARs Data Mining, Motif Search, and Comparison in Databases; 2.1.2 Heatmap Cluster and Correlation Plot; 2.1.3 Scatter Plot for Correlation; 2.1.4 Design, Evaluation, and Synthesis of an Artificial MAR Sequence; 2.2 Translation Initiation Site (Fig. 2.1b); 2.2.1 Data Mining of the Microalgae MRNAs in Databases. 
505 8 |a 2.2.2 In Silico Analysis of the Full-Length mRNAs2.3 Signal Peptide Prediction (Fig. 2.1c); 2.4 Gene Optimization (Fig. 2.1d); 2.5 Microalgae Transformation; References; 3 Outcomes Assessment; 3.1 Scaffold/Matrix Attachment Regions (S/MARs); 3.1.1 Statistical Analysis of the S/MARs Structure; 3.1.2 Significant Motifs; 3.1.3 Intercorrelation Analysis; 3.1.4 Clustering Pattern Analysis; 3.1.5 Motif Mapping; 3.1.6 CpG Islands; 3.2 Translation Initiation Site (TIS); 3.3 Signal Peptide (SP) Prediction; 3.4 Gene Optimization; 3.4.1 Codon Optimization; 3.4.2 mRNA Secondary Structure. 
505 8 |a 3.5 Transformation3.5.1 Transformation Techniques; References; 4 Conceptual Models; 4.1 Scaffold/Matrix Attachment Regions (S/MARs); 4.2 Translation Initiation Site (TIS); 4.3 Signal Peptide Prediction; 4.4 Gene Optimization; 4.4.1 Codon Optimization; 4.4.2 mRNA Secondary Structure; 4.4.3 Additional Optimization Parameters; 4.5 Transformation; 4.6 Summary; References; Appendix A; Appendix B; Appendix C; Appendix D; Appendix E; Appendix F; Appendix G; Appendix H; Appendix I: The Detailed Methodology of the Transformation Procedure; Appendix J; Appendix K; Appendix L; Appendix M; Appendix N. 
505 8 |a Appendix OAppendix P; Appendix Q; Appendix R; Appendix S; Appendix T; Appendix U; Appendix V; Index. 
588 0 |a Online resource; title from digital title page (viewed on July 19, 2018). 
520 |a This book is a practical review which focuses on computational analysis and on in silicoapproaches towards the systematic discovery of various key functional gene expression elements in microalgae as a model. So far, in this regard very little information is available. Efficient stepwise procedures for analysing the matrix attachment regions (MARs) are outlined, as well as for translation initiation sites (TIS), signal peptide (SP) sequences, gene optimization and transformation systems. These outlines can be efficiently deployed as practical models for the systematic discovery of key expression elements and for the optimization of cis/transgenes in other micro/organisms. The first chapter is an introduction on the key gene expression elements analysed in this book, including scaffold/matrix attachment regions, translation initiation sites, signal peptides as well as gene optimization. Chapter 2 focuses on systematic strategies and computational approaches toward in silico analysis of each factor. The analyses outcomes is assessed individually in chapter 3 followed by developing the specific conceptual models for each element in Chapter 4. The concluding remarks are discussed in Chapter 5. This work is of interest to computational and experimental biologists interested in transcriptional regulation analysis as well as to researchers and scientists who wish to consider the use of bioinformatics and computational biology in design, analysis, or regulatory reviews of key gene expression elements for the production of recombinant proteins experiments. 
650 0 |a Recombinant proteins.  |0 http://id.loc.gov/authorities/subjects/sh90005744 
650 0 |a Transgenes  |x Expression.  |0 http://id.loc.gov/authorities/subjects/sh99010677 
650 0 |a Genomics.  |0 http://id.loc.gov/authorities/subjects/sh2002000809 
650 7 |a SCIENCE  |x Chemistry  |x Industrial & Technical.  |2 bisacsh 
650 7 |a TECHNOLOGY & ENGINEERING  |x Chemical & Biochemical.  |2 bisacsh 
650 7 |a Life sciences: general issues.  |2 bicssc 
650 7 |a Proteins.  |2 bicssc 
650 7 |a Biology, life sciences.  |2 bicssc 
650 7 |a Genomics.  |2 fast  |0 (OCoLC)fst00940228 
650 7 |a Recombinant proteins.  |2 fast  |0 (OCoLC)fst01091505 
650 7 |a Transgenes  |x Expression.  |2 fast  |0 (OCoLC)fst01154665 
655 4 |a Electronic books. 
776 0 8 |i Print version:  |t CIS/TRANSGENE OPTIMIZATION.  |d [Place of publication not identified] : SPRINGER INTERNATIONAL PU, 2018  |z 331990390X  |z 9783319903903  |w (OCoLC)1029648003 
830 0 |a SpringerBriefs in systems biology.  |0 http://id.loc.gov/authorities/names/n2013180242 
903 |a HeVa 
929 |a oclccm 
999 f f |i b20f961a-497f-59af-bc14-a529c6ba3be4  |s cd25f6b5-db0f-5b29-9c76-ce10e3a5b62a 
928 |t Library of Congress classification  |a TP248.65.P76 K33 2018  |l Online  |c UC-FullText  |u https://link.springer.com/10.1007/978-3-319-90391-0  |z Springer Nature  |g ebooks  |i 12554213