Functional analysis : an introductory course /

Saved in:
Bibliographic Details
Author / Creator:Ovchinnikov, Sergeĭ, author.
Imprint:Cham : Springer, 2018.
Description:1 online resource (XII, 205 pages) : illustrations
Language:English
Series:Universitext, 0172-5939
Universitext,
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11664215
Hidden Bibliographic Details
ISBN:3319915126
3319915118
9783319915111
9783319915128
Digital file characteristics:text file PDF
Notes:Includes bibliographical references and index.
Summary:This concise text provides a gentle introduction to functional analysis. Chapters cover essential topics such as special spaces, normed spaces, linear functionals, and Hilbert spaces. Numerous examples and counterexamples aid in the understanding of key concepts, while exercises at the end of each chapter provide ample opportunities for practice with the material. Proofs of theorems such as the Uniform Bounded Theory, the Open Mapping Theorem, and the Closed Graph Theorem are worked through step-by-step, providing an accessible avenue to understanding these important results. The prerequisites for this book are linear algebra and elementary real analysis, with two introductory chapters providing an overview of material necessary for the subsequent text. Functional Analysis offers an elementary approach ideal for the upper-undergraduate or beginning graduate student. Primarily intended for a one-semester introductory course, this text is also a perfect resource for independent study or as the basis for a reading course.
Other form:Print version: 9783319915111
Standard no.:10.1007/978-3-319-91512-8
9783319915111

MARC

LEADER 00000cam a2200000Mi 4500
001 11664215
006 m o d
007 cr nn||||mamaa
008 180609s2018 sz a ob 001 0 eng d
005 20240705155340.9
019 |a 1040262092  |a 1043846130  |a 1043889245  |a 1044717383  |a 1059034106  |a 1066647243  |a 1073077754  |a 1086447834 
020 |a 3319915126 
020 |a 3319915118 
020 |a 9783319915111 
020 |a 9783319915128  |q (electronic bk.) 
024 7 |a 10.1007/978-3-319-91512-8  |2 doi 
024 3 |a 9783319915111 
035 |a (OCoLC)1040651209  |z (OCoLC)1040262092  |z (OCoLC)1043846130  |z (OCoLC)1043889245  |z (OCoLC)1044717383  |z (OCoLC)1059034106  |z (OCoLC)1066647243  |z (OCoLC)1073077754  |z (OCoLC)1086447834 
035 9 |a (OCLCCM-CC)1040651209 
037 |a 9783319915111  |b 00024965 
040 |a AZU  |b eng  |e pn  |c AZU  |d OCLCO  |d GW5XE  |d FIE  |d YDX  |d OCLCF  |d UAB  |d UPM  |d STF  |d VT2  |d OH1  |d AU@  |d CNCEN  |d WYU  |d OCLCQ  |d OTZ  |d LVT  |d U3W  |d CAUOI  |d MERER  |d OCLCQ  |d COO  |d OCLCQ  |d UKAHL  |d EBLCP  |d N$T  |d OCLCO 
049 |a MAIN 
050 4 |a QA320 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT037000  |2 bisacsh 
100 1 |a Ovchinnikov, Sergeĭ,  |e author. 
245 1 0 |a Functional analysis :  |b an introductory course /  |c Sergei Ovchinnikov. 
264 1 |a Cham :  |b Springer,  |c 2018. 
300 |a 1 online resource (XII, 205 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext,  |x 0172-5939 
505 0 |a Preface -- 1. Preliminaries -- 2. Metric Spaces -- 3. Special Spaces -- 4. Normed Spaces -- 5. Linear Functionals -- 6. Fundamental Theorems -- 7. Hilbert Spaces -- A. Hilbert Spaces L2(J) -- References -- Index. 
520 |a This concise text provides a gentle introduction to functional analysis. Chapters cover essential topics such as special spaces, normed spaces, linear functionals, and Hilbert spaces. Numerous examples and counterexamples aid in the understanding of key concepts, while exercises at the end of each chapter provide ample opportunities for practice with the material. Proofs of theorems such as the Uniform Bounded Theory, the Open Mapping Theorem, and the Closed Graph Theorem are worked through step-by-step, providing an accessible avenue to understanding these important results. The prerequisites for this book are linear algebra and elementary real analysis, with two introductory chapters providing an overview of material necessary for the subsequent text. Functional Analysis offers an elementary approach ideal for the upper-undergraduate or beginning graduate student. Primarily intended for a one-semester introductory course, this text is also a perfect resource for independent study or as the basis for a reading course. 
504 |a Includes bibliographical references and index. 
650 0 |a Mathematics.  |0 http://id.loc.gov/authorities/subjects/sh85082139 
650 0 |a Functional analysis.  |0 http://id.loc.gov/authorities/subjects/sh85052312 
650 7 |a Functional analysis.  |2 fast  |0 (OCoLC)fst00936061 
650 7 |a Mathematics.  |2 fast  |0 (OCoLC)fst01012163 
655 4 |a Electronic books. 
776 0 8 |i Print version:  |z 9783319915111  |w (OCoLC)1031308436 
830 0 |a Universitext,  |x 0172-5939  |0 http://id.loc.gov/authorities/names/n42025686 
903 |a HeVa 
929 |a oclccm 
999 f f |i 91068740-d9fd-5a90-b8cc-4ee3de25cf8e  |s 7cb68bc9-4f29-54e7-b6c2-5d414d197cf1 
928 |t Library of Congress classification  |a QA320  |l Online  |c UC-FullText  |u https://link.springer.com/10.1007/978-3-319-91512-8  |z Springer Nature  |g ebooks  |i 12554766