Control of the gravitational wave interferometric detector advanced Virgo /

Saved in:
Bibliographic Details
Author / Creator:Diaz, Julia Casanueva, author.
Imprint:Cham, Switzerland : Springer, 2018.
Description:1 online resource
Language:English
Series:Springer theses
Springer theses.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11679050
Hidden Bibliographic Details
ISBN:9783319960142
3319960148
9783319960135
331996013X
Notes:"Doctoral thesis accepted by the University of Paris-Sud, Orsay, France."
Includes bibliographical references.
Online resource; title from PDF title page (SpringerLink, viewed August 2, 2018).
Summary:This book focuses on the development and implementation of the longitudinal, angular and frequency controls of the Advanced Virgo detector, both from the simulation and experimental point of view, which contributed to Virgo reaching a sensitivity that enabled it to join the LIGO-Virgo O2 run in August 2017. This data taking was very successful, with the first direct detection of a binary black hole merger (GW170814) using the full network of three interferometers, and the first detection and localization of a binary neutron star merger (GW170817). The second generation of gravitational wave detector, Advanced Virgo, is capable of detecting differential displacements of the order of 10?21m. This means that it is highly sensitive to any disturbance, including the seismic movement of the Earth. For this reason an active control is necessary to keep the detector in place with sufficient accuracy.
Other form:Print version: Diaz, Julia Casanueva. Control of the gravitational wave interferometric detector advanced Virgo. Cham, Switzerland : Springer, 2018 331996013X 9783319960135

MARC

LEADER 00000cam a2200000Ii 4500
001 11679050
005 20210625184449.6
006 m o d
007 cr cnu---unuuu
008 180801s2018 sz ob 000 0 eng d
015 |a GBB8M4034  |2 bnb 
016 7 |a 019138840  |2 Uk 
019 |a 1047636756 
020 |a 9783319960142  |q (electronic bk.) 
020 |a 3319960148  |q (electronic bk.) 
020 |z 9783319960135  |q (print) 
020 |z 331996013X 
035 |a (OCoLC)1046977766  |z (OCoLC)1047636756 
035 9 |a (OCLCCM-CC)1046977766 
037 |a com.springer.onix.9783319960142  |b Springer Nature 
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d GW5XE  |d N$T  |d EBLCP  |d YDX  |d UAB  |d STF  |d VT2  |d OCLCF  |d MERER  |d U3W  |d OCLCQ  |d LVT  |d UKMGB  |d CAUOI  |d SNK  |d COO  |d AU@  |d UKAHL  |d OCLCQ 
049 |a MAIN 
050 4 |a QC179 
072 7 |a SCI  |x 057000  |2 bisacsh 
100 1 |a Diaz, Julia Casanueva,  |e author. 
245 1 0 |a Control of the gravitational wave interferometric detector advanced Virgo /  |c Julia Casanueva Diaz. 
264 1 |a Cham, Switzerland :  |b Springer,  |c 2018. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Springer theses 
500 |a "Doctoral thesis accepted by the University of Paris-Sud, Orsay, France." 
504 |a Includes bibliographical references. 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed August 2, 2018). 
505 0 |a Intro; Supervisor's Foreword; Abstract; Acknowledgements; Contents; Abbreviations; 1 Introduction; 1.1 Introduction; References; 2 Gravitational Waves; 2.1 Gravitational Waves; 2.2 Sources of Gravitational Waves; 2.2.1 Neutron Stars; 2.2.2 Compact Binary Coalescence; 2.2.3 Bursts; 2.2.4 Stochastic Background; 2.3 GW150914: First Detection; References; 3 Ground Based Gravitational Wave Detectors; 3.1 Detection Principle; 3.2 Interferometer Sensitivity; 3.2.1 Shot Noise; 3.2.2 Improving the Sensitivity; 3.2.3 Limiting Noises; 3.2.4 Homodyne Detection Versus Frontal Modulation; References 
505 8 |a 4 Advanced Virgo4.1 OSD: Optical Simulation and Design; 4.2 TCS: Thermal Compensation System; 4.3 SUSP: Suspensions; 4.4 INJ: Injection; 4.5 DET: Detection; 4.6 ISC: Interferometer Sensing and Control; 4.7 DAQ: Data Acquisition; References; 5 Fabry-Perot Cavities in Advanced Virgo; 5.1 Basic Properties; 5.1.1 Types of Cavity; 5.2 Dynamical Effects; 5.3 Gaussian Optics; 5.3.1 Generalities and Definitions; 5.3.2 Higher Order Modes; 5.3.3 Stability of a Resonator; 5.4 Longitudinal Motion Control; 5.4.1 Feedback Control Loops; 5.4.2 Length Sensing: PDH Technique 
505 8 |a 5.4.3 Lock Acquisition: Guided Lock5.5 Angular Motion Control; 5.5.1 Alignment Coordinates; 5.5.2 Automatic Alignment; 5.6 Summary; References; 6 Power Recycled Interferometer; 6.1 PRITF Optical Configuration; 6.1.1 Electric Field Equations in Dark Fringe: Carrier; 6.1.2 Sidebands Behaviour: Schnupp Asymmetry and PRC Length; 6.1.3 Summary: Working Point; 6.2 Longitudinal Control; 6.2.1 Final State: Sensing and Driving; 6.2.2 PRC Stability Versus Alignment: 131 MHz; 6.2.3 Lock Acquisition Strategy: Variable Finesse; 6.2.4 Step 3: Recombined Configuration; 6.2.5 Step 4: PR Alignment 
505 8 |a 6.2.6 Towards Dark Fringe: MICH Offset Reduction6.2.7 Summary: Longitudinal Control Sensing; 6.3 SSFS: Second Stage of Frequency Stabilization; 6.3.1 SSFS Architecture; 6.3.2 SSFS Commissioning: CARM to MC; 6.3.3 Impact of HOMs on the Optical TF; 6.4 Angular Control; 6.4.1 Sensing and Driving; 6.5 Summary; References; 7 Advanced Virgo Commissioning; 7.1 Commissioning Timeline; 7.2 Steps 1 and 2: Arm Cavities Control; 7.2.1 Velocity and Finesse Measurements; 7.2.2 Guided Lock Implementation; 7.2.3 Error Signal Calibration; 7.2.4 Angular Control; 7.3 Step 3: Recombined; 7.3.1 MICH Loop 
505 8 |a 7.3.2 CARM/DARM Loops7.3.3 Second Stage of Frequency Stabilization; 7.4 Step 4: PR Alignment; 7.4.1 PRCL Loop; 7.4.2 MICH Driving Matrix; 7.4.3 Longitudinal Loops After the PR Alignment; 7.4.4 Alignment Using Quadrant Photodiodes; 7.5 Towards Dark Fringe; 7.5.1 Optical Gain Evolution; 7.5.2 Recycling Gain; 7.5.3 Alignment; 7.6 Dark Fringe; References; 8 Conclusion; Reference 
520 |a This book focuses on the development and implementation of the longitudinal, angular and frequency controls of the Advanced Virgo detector, both from the simulation and experimental point of view, which contributed to Virgo reaching a sensitivity that enabled it to join the LIGO-Virgo O2 run in August 2017. This data taking was very successful, with the first direct detection of a binary black hole merger (GW170814) using the full network of three interferometers, and the first detection and localization of a binary neutron star merger (GW170817). The second generation of gravitational wave detector, Advanced Virgo, is capable of detecting differential displacements of the order of 10?21m. This means that it is highly sensitive to any disturbance, including the seismic movement of the Earth. For this reason an active control is necessary to keep the detector in place with sufficient accuracy. 
650 0 |a Gravitational waves.  |0 http://id.loc.gov/authorities/subjects/sh85056562 
650 0 |a Interferometry.  |0 http://id.loc.gov/authorities/subjects/sh85067258 
650 7 |a SCIENCE  |x Physics  |x Quantum Theory.  |2 bisacsh 
650 7 |a Mensuration & systems of measurement.  |2 bicssc 
650 7 |a Gravity.  |2 bicssc 
650 7 |a Laser technology & holography.  |2 bicssc 
650 7 |a Astronomy, space & time.  |2 bicssc 
650 7 |a Gravitational waves.  |2 fast  |0 (OCoLC)fst00946882 
650 7 |a Interferometry.  |2 fast  |0 (OCoLC)fst00976235 
655 4 |a Electronic books. 
776 0 8 |i Print version:  |a Diaz, Julia Casanueva.  |t Control of the gravitational wave interferometric detector advanced Virgo.  |d Cham, Switzerland : Springer, 2018  |z 331996013X  |z 9783319960135  |w (OCoLC)1040615745 
830 0 |a Springer theses.  |0 http://id.loc.gov/authorities/names/no2010186160 
903 |a HeVa 
929 |a oclccm 
999 f f |i 12498817-4ce9-5a7b-9340-d2ea3214acd5  |s 90ef0d8f-38b2-5ea2-9465-24b7d70be9b5 
928 |t Library of Congress classification  |a QC179  |l Online  |c UC-FullText  |u https://link.springer.com/10.1007/978-3-319-96014-2  |z Springer Nature  |g ebooks  |i 12555228