A new approach to Kazhdan-Lusztig theory of type B via quantum symmetric pairs /

Saved in:
Bibliographic Details
Author / Creator:Bao, Huanchen, author.
Imprint:Paris : Société Mathématique de France, 2018.
©2018
Description:vii, 134 pages ; 24 cm.
Language:English
Series:Astérisque, 0303-1179 ; 402
Astérisque ; 402.
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11730659
Hidden Bibliographic Details
Other authors / contributors:Wang, Weiqiang, 1970- author.
ISBN:9782856298893
2856298893
Notes:Includes bibliographical references (pages 131-134).
Abstract also in French.
Summary:We show that Hecke algebra of type B and a coideal subalgebra of the type A quantum group satsify a double centralizer property, generalizing the Schur-Jimbo duality in type A. The quantum group of type A and its coideal subalgebra form a quantum symmetric pair. A new theory of canonical bases arising from quantum symmetric pairs is initiated. It is then applied to formulate and establish for the first time a Kazhdan-Lusztig theory for the BGG category [O] of the orthosymplectic Lie superalgebras osp(2m + 1[vertical bar]2n). In particular, our approach provides a new formulation of the Kazhdan-Lusztig theory for Lie algebras of type B/C.

MARC

LEADER 00000cam a2200000Ii 4500
001 11730659
003 ICU
005 20181220114629.1
008 181029t20182018fr b 000 0 eng d
016 7 |a 019122739  |2 Uk 
019 |a 1061819314 
020 |a 9782856298893  |q (paperback) 
020 |a 2856298893  |q (paperback) 
035 |a (OCoLC)1059488257  |z (OCoLC)1061819314 
040 |a LWU  |b eng  |e rda  |c LWU  |d OCLCO  |d QGE  |d LRU  |d PAU  |d WAU  |d LRU  |d OCLCF  |d UKMGB 
041 0 |a eng  |b eng  |b fre 
049 |a CGUA 
050 1 4 |a QA252.3  |b .B36 2018 
050 1 4 |a QA1  |b .A85 no. 402 
100 1 |a Bao, Huanchen,  |e author.  |1 http://viaf.org/viaf/1157155284864087061934 
245 1 2 |a A new approach to Kazhdan-Lusztig theory of type B via quantum symmetric pairs /  |c Huanchen Bao, Weiqiang Wang. 
264 1 |a Paris :  |b Société Mathématique de France,  |c 2018. 
264 4 |c ©2018 
300 |a vii, 134 pages ;  |c 24 cm. 
336 |a text  |b txt  |2 rdacontent  |0 http://id.loc.gov/vocabulary/contentTypes/txt 
337 |a unmediated  |b n  |2 rdamedia  |0 http://id.loc.gov/vocabulary/mediaTypes/n 
338 |a volume  |b nc  |2 rdacarrier  |0 http://id.loc.gov/vocabulary/carriers/nc 
490 1 |a Astérisque,  |x 0303-1179 ;  |v 402 
504 |a Includes bibliographical references (pages 131-134). 
520 3 |a We show that Hecke algebra of type B and a coideal subalgebra of the type A quantum group satsify a double centralizer property, generalizing the Schur-Jimbo duality in type A. The quantum group of type A and its coideal subalgebra form a quantum symmetric pair. A new theory of canonical bases arising from quantum symmetric pairs is initiated. It is then applied to formulate and establish for the first time a Kazhdan-Lusztig theory for the BGG category [O] of the orthosymplectic Lie superalgebras osp(2m + 1[vertical bar]2n). In particular, our approach provides a new formulation of the Kazhdan-Lusztig theory for Lie algebras of type B/C. 
546 |a Abstract also in French. 
650 0 |a Kazhdan-Lusztig polynomials.  |0 http://id.loc.gov/authorities/subjects/sh87001216 
650 0 |a Lie superalgebras.  |0 http://id.loc.gov/authorities/subjects/sh94002764 
650 0 |a Hecke algebras.  |0 http://id.loc.gov/authorities/subjects/sh90002586 
650 0 |a Quantum groups.  |0 http://id.loc.gov/authorities/subjects/sh90005801 
650 7 |a Hecke algebras.  |2 fast  |0 (OCoLC)fst00954423 
650 7 |a Kazhdan-Lusztig polynomials.  |2 fast  |0 (OCoLC)fst00986655 
650 7 |a Lie superalgebras.  |2 fast  |0 (OCoLC)fst00998136 
650 7 |a Quantum groups.  |2 fast  |0 (OCoLC)fst01085113 
700 1 |a Wang, Weiqiang,  |d 1970-  |e author.  |0 http://id.loc.gov/authorities/names/n2010067417  |1 http://viaf.org/viaf/135115186 
830 0 |a Astérisque ;  |v 402. 
903 |a HeVa 
929 |a cat 
999 f f |i cc271832-3222-582a-86a6-4086c027ae3f  |s 4465963d-9315-5dc6-80f3-338b33ffbc9f 
928 |t Library of Congress classification  |a QA252.3.B36 2018  |l Eck  |c Eck-Eck  |i 11175230 
927 |t Library of Congress classification  |a QA252.3.B36 2018  |l Eck  |c Eck-Eck  |g SEPS  |b 115748397  |i 10043849