Sparse grids and applications : Miami 2016 /

Saved in:
Bibliographic Details
Meeting name:Workshop on Sparse Grids and Applications (4th : 2016 : Miami, Fla.)
Imprint:Cham, Switzerland : Springer, [2018]
©2018
Description:1 online resource
Language:English
Series:Lecture notes in computational science and engineering ; 123
Lecture notes in computational science and engineering ; 123.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11736798
Hidden Bibliographic Details
Other authors / contributors:Garcke, Jochen, editor.
Pflüger, Dirk, editor.
Webster, Clayton G. (Clayton Garrett), 1978- editor.
Zhang, Guannan, 1984- editor.
ISBN:9783319754260
3319754262
9783319754253
3319754254
Digital file characteristics:text file PDF
Notes:Selected papers from the conference.
Includes bibliographical references.
Online resource; title from PDF title page (EBSCO, viewed June 25, 2018).
Summary:Sparse grids are a popular tool for the numerical treatment of high-dimensional problems. Where classical numerical discretization schemes fail in more than three or four dimensions, sparse grids, in their different flavors, are frequently the method of choice. This volume of LNCSE presents selected papers from the proceedings of the fourth workshop on sparse grids and applications, and demonstrates once again the importance of this numerical discretization scheme. The articles present recent advances in the numerical analysis of sparse grids in connection with a range of applications including computational chemistry, computational fluid dynamics, and big data analytics, to name but a few.--
Other form:Print version: Workshop on Sparse Grids and Applications (4th : 2016 : Miami, Fla.). Sparse grids and applications. Cham, Switzerland : Springer, [2018] 3319754254 9783319754253
Standard no.:10.1007/978-3-319-75426-0

MARC

LEADER 00000cam a2200000Ii 4500
001 11736798
005 20210625183928.9
006 m o d
007 cr cnu|||unuuu
008 180622s2018 sz ob 100 0 eng d
015 |a GBB8M3752  |2 bnb 
016 7 |a 019138535  |2 Uk 
019 |a 1042079994  |a 1047689947  |a 1204002762  |a 1237411920  |a 1241956964  |a 1244625377 
020 |a 9783319754260  |q (electronic bk.) 
020 |a 3319754262  |q (electronic bk.) 
020 |z 9783319754253 
020 |z 3319754254 
024 7 |a 10.1007/978-3-319-75426-0  |2 doi 
035 |a (OCoLC)1041707031  |z (OCoLC)1042079994  |z (OCoLC)1047689947  |z (OCoLC)1204002762  |z (OCoLC)1237411920  |z (OCoLC)1241956964  |z (OCoLC)1244625377 
035 9 |a (OCLCCM-CC)1041707031 
037 |a com.springer.onix.9783319754260  |b Springer Nature 
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d GW5XE  |d EBLCP  |d YDX  |d FIE  |d OCLCF  |d UPM  |d OCLCQ  |d UKMGB  |d STF  |d UAB  |d CAUOI  |d MERER  |d U3W  |d OCLCQ  |d COO  |d UKAHL  |d OCLCQ  |d DCT 
049 |a MAIN 
050 4 |a QA188 
072 7 |a COM  |x 013000  |2 bisacsh 
072 7 |a COM  |x 014000  |2 bisacsh 
072 7 |a COM  |x 018000  |2 bisacsh 
072 7 |a COM  |x 067000  |2 bisacsh 
072 7 |a COM  |x 032000  |2 bisacsh 
072 7 |a COM  |x 037000  |2 bisacsh 
072 7 |a COM  |x 052000  |2 bisacsh 
072 7 |a PBKS  |2 bicssc 
111 2 |a Workshop on Sparse Grids and Applications  |n (4th :  |d 2016 :  |c Miami, Fla.) 
245 1 0 |a Sparse grids and applications :  |b Miami 2016 /  |c Jochen Garcke, Dirk Pflüger, Clayton G. Webster, Guannan Zhang, editors. 
264 1 |a Cham, Switzerland :  |b Springer,  |c [2018] 
264 4 |c ©2018 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture notes in computational science and engineering ;  |v 123 
500 |a Selected papers from the conference. 
504 |a Includes bibliographical references. 
588 0 |a Online resource; title from PDF title page (EBSCO, viewed June 25, 2018). 
505 0 |a Intro; Preface; Contents; Contributors; Comparing Nested Sequences of Leja and PseudoGauss Points to Interpolate in 1D and Solve the Schroedinger Equation in 9D; 1 Introduction; 2 Interpolation; 3 The Importance of Nesting; 3.1 PseudoGauss Nested Points; 3.2 Leja Nested Points; 4 Lebesgue Constants; 5 Comparison Between Leja Points and PseudoGauss Points in Collocation Calculations; 6 Conclusion; References; On the Convergence Rate of Sparse Grid Least Squares Regression; 1 Introduction; 2 Least-Squares Regression; 3 Full Grids and Sparse Grids; 4 Error Analysis. 
505 8 |a 4.1 Well-Posedness and Error Decay4.2 Application to Sparse Grids; 5 Numerical Experiments; 5.1 Error Decay; 5.2 Balancing the Error; 6 Conclusion; References; Multilevel Adaptive Stochastic Collocation with Dimensionality Reduction; 1 Introduction; 2 Adaptivity with Sparse Grids; 2.1 Interpolation on Spatially-Adaptive Sparse Grids; 2.2 Interpolation with Dimension-Adaptive Sparse Grids; 3 Multilevel Stochastic Collocation with Dimensionality Reduction; 3.1 Generalized Polynomial Chaos; 3.2 Multilevel Approaches for Generalized Polynomial Chaos; 3.3 Stochastic Dimensionality Reduction. 
505 8 |a 4 Numerical Results4.1 Second-Order Linear Oscillator with External Forcing; 4.2 A simple Fluid-Structure Interaction Example; 5 Conclusions and Outlook; References; Limiting Ranges of Function Values of Sparse Grid Surrogates; 1 Introduction; 2 Sparse Grids; 2.1 Hierarchical Ancestors and the Fundamental Property; 2.2 Interpolation on Sparse Grids; 3 Limiting Ranges of Sparse Grid Function Values; 3.1 Limitation from Above and Below; 3.2 Minimal Extension Set; 3.3 Computing Coefficients of the Extension Set; 3.4 Intersection Search; 4 Approximation of Gaussians with Extended Sparse Grids. 
505 8 |a 4.1 Intersection Search and Candidate Sets for Regular Sparse Grids4.2 Extension Sets and Convergence for Regular Grids; 4.3 Extension Sets for Adaptively Refined Grids; 5 Conclusions; References; Scalable Algorithmic Detection of Silent Data Corruption for High-Dimensional PDEs; 1 Introduction; 1.1 High-Dimensional PDEs in High-Performance Computing; 2 Theory of the Classical Combination Technique; 3 The Combination Technique in Parallel; 4 Dealing with System Faults; 5 Detecting and Recovering from SDC; 5.1 Method 1: Comparing Combination Solutions Pairwise via a Maximum Norm. 
505 8 |a 5.2 Method 2: Comparing Combination Solutions via their Function Values Directly5.3 Cost and Parallelization; 5.4 Detection Rates; 6 Numerical Tests; 6.1 Experimental Setup; 6.2 SDC Injection; 6.3 Results: Detection Rates and Errors; 6.4 Results: Scaling; 6.5 Dealing with False Positives; 7 Extensions to Quantities of Interest; 8 Conclusion; References; Sparse Grid Quadrature Rules Based on Conformal Mappings; 1 Introduction and Background; 2 Transformed Quadrature Rules; 2.1 Standard One-Dimensional Quadrature Rules; 2.2 Sparse Quadrature for High Dimensional Integrals. 
520 |a Sparse grids are a popular tool for the numerical treatment of high-dimensional problems. Where classical numerical discretization schemes fail in more than three or four dimensions, sparse grids, in their different flavors, are frequently the method of choice. This volume of LNCSE presents selected papers from the proceedings of the fourth workshop on sparse grids and applications, and demonstrates once again the importance of this numerical discretization scheme. The articles present recent advances in the numerical analysis of sparse grids in connection with a range of applications including computational chemistry, computational fluid dynamics, and big data analytics, to name but a few.--  |c Provided by publisher. 
650 0 |a Sparse matrices  |v Congresses. 
650 0 |a Numerical analysis  |v Congresses. 
650 0 |a Numerical grid generation (Numerical analysis)  |v Congresses. 
650 7 |a COMPUTERS  |x Computer Literacy.  |2 bisacsh 
650 7 |a COMPUTERS  |x Computer Science.  |2 bisacsh 
650 7 |a COMPUTERS  |x Data Processing.  |2 bisacsh 
650 7 |a COMPUTERS  |x Hardware  |x General.  |2 bisacsh 
650 7 |a COMPUTERS  |x Information Technology.  |2 bisacsh 
650 7 |a COMPUTERS  |x Machine Theory.  |2 bisacsh 
650 7 |a COMPUTERS  |x Reference.  |2 bisacsh 
650 7 |a Mathematical theory of computation.  |2 bicssc 
650 7 |a Computer modelling & simulation.  |2 bicssc 
650 7 |a Differential calculus & equations.  |2 bicssc 
650 7 |a Numerical analysis.  |2 bicssc 
650 7 |a Numerical analysis.  |2 fast  |0 (OCoLC)fst01041273 
650 7 |a Numerical grid generation (Numerical analysis)  |2 fast  |0 (OCoLC)fst01041296 
650 7 |a Sparse matrices.  |2 fast  |0 (OCoLC)fst01128743 
655 4 |a Electronic books. 
655 7 |a Conference papers and proceedings.  |2 fast  |0 (OCoLC)fst01423772 
700 1 |a Garcke, Jochen,  |e editor.  |0 http://id.loc.gov/authorities/names/nb2012030056 
700 1 |a Pflüger, Dirk,  |e editor.  |0 http://id.loc.gov/authorities/names/nb2014012758 
700 1 |a Webster, Clayton G.  |q (Clayton Garrett),  |d 1978-  |e editor.  |0 http://id.loc.gov/authorities/names/no2007083002 
700 1 |a Zhang, Guannan,  |d 1984-  |e editor.  |0 http://id.loc.gov/authorities/names/no2014058765 
773 0 |t Springer eBooks 
776 0 8 |i Print version:  |a Workshop on Sparse Grids and Applications (4th : 2016 : Miami, Fla.).  |t Sparse grids and applications.  |d Cham, Switzerland : Springer, [2018]  |z 3319754254  |z 9783319754253  |w (OCoLC)1019639549 
830 0 |a Lecture notes in computational science and engineering ;  |v 123.  |0 http://id.loc.gov/authorities/names/n97020519 
903 |a HeVa 
929 |a oclccm 
999 f f |i 0cf98624-ae81-5e0a-af20-a1e908e863bf  |s d93f5103-1281-5822-ae4f-55c020f481fe 
928 |t Library of Congress classification  |a QA188  |l Online  |c UC-FullText  |u https://link.springer.com/10.1007/978-3-319-75426-0  |z Springer Nature  |g ebooks  |i 12554923