Elliptic differential operators and spectral analysis /

Saved in:
Bibliographic Details
Author / Creator:Edmunds, D. E. (David Eric), author.
Imprint:Cham : Springer, 2018.
Description:1 online resource
Language:English
Series:Springer monographs in mathematics
Springer monographs in mathematics.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11737641
Hidden Bibliographic Details
Other authors / contributors:Evans, W. D., author.
ISBN:9783030021252
3030021254
9783030021245
3030021246
Digital file characteristics:text file PDF
Notes:Includes bibliographical references and index.
Online resource; title from PDF title page (EBSCO, viewed November 27, 2018)
Summary:This book deals with elliptic differential equations, providing the analytic background necessary for the treatment of associated spectral questions, and covering important topics previously scattered throughout the literature. Starting with the basics of elliptic operators and their naturally associated function spaces, the authors then proceed to cover various related topics of current and continuing importance. Particular attention is given to the characterisation of self-adjoint extensions of symmetric operators acting in a Hilbert space and, for elliptic operators, the realisation of such extensions in terms of boundary conditions. A good deal of material not previously available in book form, such as the treatment of the Schauder estimates, is included. Requiring only basic knowledge of measure theory and functional analysis, the book is accessible to graduate students and will be of interest to all researchers in partial differential equations. The reader will value its self-contained, thorough and unified presentation of the modern theory of elliptic operators.--
Other form:Print version: Edmunds, D.E. (David Eric). Elliptic differential operators and spectral analysis. Cham : Springer, 2018 3030021246 9783030021245
Standard no.:10.1007/978-3-030-02125-2

MARC

LEADER 00000cam a2200000Ii 4500
001 11737641
005 20210625184102.6
006 m o d
007 cr cnu---unuuu
008 181126s2018 sz ob 001 0 eng d
015 |a GBB907484  |2 bnb 
015 |a GBB917447  |2 bnb 
016 7 |a 019198536  |2 Uk 
019 |a 1076260962  |a 1080600394  |a 1086470125  |a 1097162991  |a 1117856392  |a 1125705879  |a 1132923444 
020 |a 9783030021252  |q (electronic bk.) 
020 |a 3030021254  |q (electronic bk.) 
020 |z 9783030021245 
020 |z 3030021246 
024 7 |a 10.1007/978-3-030-02125-2  |2 doi 
035 |a (OCoLC)1076268830  |z (OCoLC)1076260962  |z (OCoLC)1080600394  |z (OCoLC)1086470125  |z (OCoLC)1097162991  |z (OCoLC)1117856392  |z (OCoLC)1125705879  |z (OCoLC)1132923444 
035 9 |a (OCLCCM-CC)1076268830 
037 |a com.springer.onix.9783030021252  |b Springer Nature 
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d EBLCP  |d GW5XE  |d FIE  |d YDX  |d UPM  |d STF  |d OCLCF  |d VT2  |d UKMGB  |d UKAHL  |d OCLCQ  |d U@J  |d OCLCQ 
049 |a MAIN 
050 4 |a QA377 
066 |c (S 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
072 7 |a PBKJ  |2 bicssc 
072 7 |a PBKJ  |2 thema 
100 1 |a Edmunds, D. E.  |q (David Eric),  |e author.  |0 http://id.loc.gov/authorities/names/n78010216 
245 1 0 |a Elliptic differential operators and spectral analysis /  |c David E. Edmunds, W. Desmond Evans. 
264 1 |a Cham :  |b Springer,  |c 2018. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer monographs in mathematics 
588 0 |a Online resource; title from PDF title page (EBSCO, viewed November 27, 2018) 
504 |a Includes bibliographical references and index. 
505 0 |a Intro; Preface; Contents; Basic Notation; 1 Preliminaries; 1.1 Integration; 1.2 Functional Analysis; 1.3 Function Spaces; 1.3.1 Spaces of Continuous Functions; 1.3.2 Sobolev Spaces; 1.4 The Hilbert and Riesz Transforms; 2 The Laplace Operator; 2.1 Mean Value Inequalities; 2.2 Representation of Solutions; 2.3 Dirichlet Problems: The Method of Perron; 2.4 Notes; 3 Second-Order Elliptic Equations; 3.1 Basic Notions; 3.2 Maximum Principles; 4 The Classical Dirichlet Problem for Second-Order Elliptic Operators; 4.1 Preamble; 4.2 The Poisson Equation; 4.3 More General Elliptic Operators; 4.4 Notes 
505 8 |a 5 Elliptic Operators of Arbitrary Order5.1 Preliminaries; 5.2 Gårding's Inequality; 5.3 The Dirichlet Problem; 5.4 A Little Regularity Theory; 5.5 Eigenvalues of the Laplacian; 5.6 Spectral Independence; 5.7 Notes; 6 Operators and Quadratic Forms in Hilbert Space; 6.1 Self-Adjoint Extensions of Symmetric Operators; 6.2 Characterisations of Self-Adjoint Extensions; 6.2.1 Linear Relations; 6.2.2 Boundary Triplets; 6.2.3 Gamma Fields and Weyl Functions; 6.3 The Friedrichs Extension; 6.4 The Krein-Vishik-Birman (KVB) Theory; 6.5 Adjoint Pairs and Closed Extensions; 6.6 Sectorial Operators 
505 8 |a 7.3.3 Limit-Point and Limit-Circle Criteria7.4 Coercive Sectorial Operators; 7.4.1 The Case dim(kerT*) =2.; 7.5 Realisations of Second-Order Elliptic Operators on Domains; 7.6 Notes; 8 The Lp Approach to the Laplace Operator; 8.1 Preamble; 8.2 Technical Results; 8.3 Existence of a Weak Lp Solution; 8.4 Other Procedures; 8.5 Notes; 9 The p-Laplacian; 9.1 Preamble; 9.2 Preliminaries; 9.3 The Dirichlet Problem; 9.4 An Eigenvalue Problem; 9.5 More About the First Eigenvalue; 9.6 Notes; 10 The Rellich Inequality; 10.1 Preamble; 10.2 The Mean Distance Function 
505 8 |a 10.3 Results Involving the Laplace Operator10.4 The p-Laplacian; 11 More Properties of Sobolev Embeddings; 11.1 The Distance Function; 11.2 Nuclear Maps; 11.3 Asymptotic Formulae for Approximation Numbers of Sobolev Embeddings; 11.4 Spaces with Variable Exponent; 11.5 Notes; 12 The Dirac Operator; 12.1 Preamble; 12.2 The Dirac Equation; 12.3 The Free Dirac Operator; 12.4 The Brown-Ravenhall Operator; 12.5 Sums of Operators and Coulomb Potentials; 12.5.1 The Case A= mathbbD; 12.5.2 The Case A = mathbbH; 12.5.3 The Case A= mathbbB; 12.6 The Free Dirac Operator on a Bounded Domain 
520 |a This book deals with elliptic differential equations, providing the analytic background necessary for the treatment of associated spectral questions, and covering important topics previously scattered throughout the literature. Starting with the basics of elliptic operators and their naturally associated function spaces, the authors then proceed to cover various related topics of current and continuing importance. Particular attention is given to the characterisation of self-adjoint extensions of symmetric operators acting in a Hilbert space and, for elliptic operators, the realisation of such extensions in terms of boundary conditions. A good deal of material not previously available in book form, such as the treatment of the Schauder estimates, is included. Requiring only basic knowledge of measure theory and functional analysis, the book is accessible to graduate students and will be of interest to all researchers in partial differential equations. The reader will value its self-contained, thorough and unified presentation of the modern theory of elliptic operators.--  |c Provided by publisher. 
650 0 |a Differential equations, Elliptic.  |0 http://id.loc.gov/authorities/subjects/sh85037895 
650 0 |a Differential operators.  |0 http://id.loc.gov/authorities/subjects/sh85037921 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 1 4 |a Partial Differential Equations.  |0 http://scigraph.springernature.com/things/product-market-codes/M12155 
650 2 4 |a Ordinary Differential Equations.  |0 http://scigraph.springernature.com/things/product-market-codes/M12147 
650 2 4 |a Functional Analysis.  |0 http://scigraph.springernature.com/things/product-market-codes/M12066 
650 2 4 |a Operator Theory.  |0 http://scigraph.springernature.com/things/product-market-codes/M12139 
650 7 |a Differential equations, Elliptic.  |2 fast  |0 (OCoLC)fst00893458 
650 7 |a Differential operators.  |2 fast  |0 (OCoLC)fst00893496 
650 7 |a Differential calculus & equations.  |2 bicssc 
650 7 |a Functional analysis & transforms.  |2 bicssc 
655 4 |a Electronic books. 
700 1 |a Evans, W. D.,  |e author.  |0 http://id.loc.gov/authorities/names/n85313941 
776 0 8 |i Print version:  |a Edmunds, D.E. (David Eric).  |t Elliptic differential operators and spectral analysis.  |d Cham : Springer, 2018  |z 3030021246  |z 9783030021245  |w (OCoLC)1051681163 
830 0 |a Springer monographs in mathematics.  |0 http://id.loc.gov/authorities/names/n97101238 
880 8 |6 505-00/(S  |a 6.6.1 The Friedrichs Extension6.6.2 The Krein-von Neumann Extension; 6.7 Notes; 7 Realisations of Second-Order Linear Elliptic Operators; 7.1 Sturm-Liouville Operators: Basic Theory; 7.1.1 The Regular Problem; 7.1.2 One Singular Point; 7.1.3 Two Singular End-Points; 7.1.4 The Titchmarsh-Weyl Function and Spectrum; 7.2 KVB Theory for Positive Sturm-Liouville Operators; 7.2.1 Semi-boundedness and Oscillation Theory; 7.2.2 Kalf's Theorem; 7.3 Application of the KVB Theory; 7.3.1 The Limit-Point Case at b; 7.3.2 The Case of b Regular or Limit Circle, and τu=0 Non-oscillatory at b 
903 |a HeVa 
929 |a oclccm 
999 f f |i 209e5634-f787-5878-a169-7abe40a2554b  |s 10659dca-50f6-5f4f-9e4a-ceebf5241eb1 
928 |t Library of Congress classification  |a QA377  |l Online  |c UC-FullText  |u https://link.springer.com/10.1007/978-3-030-02125-2  |z Springer Nature  |g ebooks  |i 12558472