Lectures on convex optimization /

Saved in:
Bibliographic Details
Author / Creator:Nesterov, I︠U︡. E., author.
Edition:Second edition.
Imprint:Cham, Switzerland : Springer, 2018.
Description:1 online resource (xxiii, 589 pages) : illustrations
Language:English
Series:Springer optimization and its applications, 1931-6828 ; volume 137
Springer optimization and its applications ; v. 137.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11737842
Hidden Bibliographic Details
ISBN:9783319915784
3319915789
3319915770
9783319915777
9783319915777
Digital file characteristics:text file PDF
Notes:Includes bibliographical references and index.
Online resource; title from PDF title page (SpringerLink, viewed December 4, 2018).
Summary:This book provides a comprehensive, modern introduction to convex optimization, a field that is becoming increasingly important in applied mathematics, economics and finance, engineering, and computer science, notably in data science and machine learning. Written by a leading expert in the field, this book includes recent advances in the algorithmic theory of convex optimization, naturally complementing the existing literature. It contains a unified and rigorous presentation of the acceleration techniques for minimization schemes of first- and second-order. It provides readers with a full treatment of the smoothing technique, which has tremendously extended the abilities of gradient-type methods. Several powerful approaches in structural optimization, including optimization in relative scale and polynomial-time interior-point methods, are also discussed in detail. Researchers in theoretical optimization as well as professionals working on optimization problems will find this book very useful. It presents many successful examples of how to develop very fast specialized minimization algorithms. Based on the author's lectures, it can naturally serve as the basis for introductory and advanced courses in convex optimization for students in engineering, economics, computer science and mathematics.--
Other form:Printed edition: 9783319915777
Printed edition: 9783319915791
Standard no.:10.1007/978-3-319-91578-4

MARC

LEADER 00000cam a2200000Ii 4500
001 11737842
006 m o d
007 cr cnu|||unuuu
008 181204s2018 sz a ob 001 0 eng d
005 20240702155626.9
015 |a GBB907501  |2 bnb 
015 |a GBB917463  |2 bnb 
016 7 |a 019198553  |2 Uk 
019 |a 1203983426  |a 1231615243  |a 1249692913 
020 |a 9783319915784  |q (electronic bk.) 
020 |a 3319915789  |q (electronic bk.) 
020 |a 3319915770 
020 |a 9783319915777 
020 |z 9783319915777  |q (print) 
024 7 |a 10.1007/978-3-319-91578-4  |2 doi 
035 |a (OCoLC)1077287529  |z (OCoLC)1203983426  |z (OCoLC)1231615243  |z (OCoLC)1249692913 
035 9 |a (OCLCCM-CC)1077287529 
037 |a com.springer.onix.9783319915784  |b Springer Nature 
040 |a GW5XE  |b eng  |e rda  |e pn  |c GW5XE  |d FIE  |d STF  |d OCLCF  |d VT2  |d UKMGB  |d OCLCQ  |d UKAHL  |d EBLCP  |d DCT  |d SFB  |d N$T 
049 |a MAIN 
050 4 |a QA402.5 
072 7 |a PBU  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
072 7 |a PBU  |2 thema 
100 1 |a Nesterov, I︠U︡. E.,  |e author.  |0 http://id.loc.gov/authorities/names/n86082035 
245 1 0 |a Lectures on convex optimization /  |c Yurii Nesterov. 
250 |a Second edition. 
264 1 |a Cham, Switzerland :  |b Springer,  |c 2018. 
300 |a 1 online resource (xxiii, 589 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer optimization and its applications,  |x 1931-6828 ;  |v volume 137 
504 |a Includes bibliographical references and index. 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed December 4, 2018). 
505 0 |a Introduction -- Part I Black-Box Optimization -- 1 Nonlinear Optimization -- 2 Smooth Convex Optimization -- 3 Nonsmooth Convex Optimization -- 4 Second-Order Methods -- Part II Structural Optimization -- 5 Polynomial-time Interior-Point Methods -- 6 Primal-Dual Model of Objective Function -- 7 Optimization in Relative Scale -- Bibliographical Comments -- Appendix A. Solving some Auxiliary Optimization Problems -- References -- Index. 
520 |a This book provides a comprehensive, modern introduction to convex optimization, a field that is becoming increasingly important in applied mathematics, economics and finance, engineering, and computer science, notably in data science and machine learning. Written by a leading expert in the field, this book includes recent advances in the algorithmic theory of convex optimization, naturally complementing the existing literature. It contains a unified and rigorous presentation of the acceleration techniques for minimization schemes of first- and second-order. It provides readers with a full treatment of the smoothing technique, which has tremendously extended the abilities of gradient-type methods. Several powerful approaches in structural optimization, including optimization in relative scale and polynomial-time interior-point methods, are also discussed in detail. Researchers in theoretical optimization as well as professionals working on optimization problems will find this book very useful. It presents many successful examples of how to develop very fast specialized minimization algorithms. Based on the author's lectures, it can naturally serve as the basis for introductory and advanced courses in convex optimization for students in engineering, economics, computer science and mathematics.--  |c Provided by publisher. 
650 0 |a Mathematical optimization.  |0 http://id.loc.gov/authorities/subjects/sh85082127 
650 7 |a Algorithms & data structures.  |2 bicssc 
650 7 |a Numerical analysis.  |2 bicssc 
650 7 |a Optimization.  |2 bicssc 
650 7 |a Computers  |x Programming  |x Algorithms.  |2 bisacsh 
650 7 |a Mathematics  |x Applied.  |2 bisacsh 
650 7 |a Mathematical optimization.  |2 fast  |0 (OCoLC)fst01012099 
655 0 |a Electronic books. 
655 4 |a Electronic books. 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319915777 
776 0 8 |i Printed edition:  |z 9783319915791 
830 0 |a Springer optimization and its applications ;  |v v. 137.  |x 1931-6828  |0 http://id.loc.gov/authorities/names/no2006059964 
903 |a HeVa 
929 |a oclccm 
999 f f |i 949dc56b-4b0e-5b89-9c4a-1e4356838877  |s 8b3e104f-951a-51e7-acf4-6b252d575a73 
928 |t Library of Congress classification  |a QA402.5  |l Online  |c UC-FullText  |u https://link.springer.com/10.1007/978-3-319-91578-4  |z Springer Nature  |g ebooks  |i 12558673