Heat transfer due to laminar natural convection of nanofluids : theory and calculation /

Saved in:
Bibliographic Details
Author / Creator:Shang, De-Yi, author.
Imprint:Cham, Switzerland : Springer, [2019]
Description:1 online resource
Language:English
Series:Heat and mass transfer
Heat and mass transfer.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11745504
Hidden Bibliographic Details
Other authors / contributors:Zhong, Liang-Cai, author.
ISBN:9783319944036
3319944037
3319944029
9783319944029
Digital file characteristics:text file PDF
Notes:Includes bibliographical references and index.
Online resource; title from digital title page (viewed on February 15, 2019).
Summary:This book presents a theoretical study of heat transfer due to laminar natural convection of nanofluids, using Al2O3-water nanofluid as an example. An innovative method of similarity transformation of velocity fields on laminar boundary layers is applied for the development of a mathematical governing model of natural convection with actual nanofluids, and a novel model of the nanofluid's variable thermophysical properties is derived by a mathematical analysis based on the developed model of variable physical properties of fluids combined with the model of the nanofluid's thermal conductivity and viscosity. Based on these, the physical property factors of nanofluids are produced, which leads to a simultaneous solution for deep investigations of hydrodynamics and heat transfer of nanofluid's natural convection. The book also proposes novel predictive formulae for the evaluation of heat transfer of Al2O3-water nanofluid's natural convection. The formulae have reliable theoretical and practical value because they are developed by rigorous theoretical analysis of heat transfer combined with full consideration of the effects of the temperature-dependent physical properties of nanofluids and the nanoparticle shape factor and concentration, as well as variations of fluid boundary temperatures. The conversion factors proposed help to turn the heat transfer coefficient and rate of fluid natural convection into those of nanofluid natural convection. Furthermore, several calculation examples are provided to demonstrate the heat transfer application of the proposed predictive formulae.
Other form:Print version: 3319944029 9783319944029
Standard no.:10.1007/978-3-319-94403-6

MARC

LEADER 00000cam a2200000Ii 4500
001 11745504
005 20210625183935.4
006 m o d
007 cr cnu---unuuu
008 180802s2019 sz ob 001 0 eng d
015 |a GBB935037  |2 bnb 
016 7 |a 019171080  |2 Uk 
019 |a 1084325937  |a 1097150611 
020 |a 9783319944036  |q (electronic book) 
020 |a 3319944037  |q (electronic book) 
020 |z 3319944029 
020 |z 9783319944029 
024 7 |a 10.1007/978-3-319-94403-6  |2 doi 
035 |a (OCoLC)1047686084  |z (OCoLC)1084325937  |z (OCoLC)1097150611 
035 9 |a (OCLCCM-CC)1047686084 
037 |a com.springer.onix.9783319944036  |b Springer Nature 
040 |a YDX  |b eng  |e rda  |e pn  |c YDX  |d N$T  |d GW5XE  |d OCLCF  |d MERER  |d OCLCQ  |d CAUOI  |d YDXIT  |d VT2  |d LEAUB  |d UKMGB  |d COO  |d OCLCQ 
049 |a MAIN 
050 4 |a TJ260  |b .S53 2019 
072 7 |a TEC  |x 009070  |2 bisacsh 
072 7 |a PHDF  |2 bicssc 
100 1 |a Shang, De-Yi,  |e author. 
245 1 0 |a Heat transfer due to laminar natural convection of nanofluids :  |b theory and calculation /  |c De-Yi Shang, Liang-Cai Zhong. 
264 1 |a Cham, Switzerland :  |b Springer,  |c [2019] 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Heat and mass transfer 
504 |a Includes bibliographical references and index. 
588 0 |a Online resource; title from digital title page (viewed on February 15, 2019). 
505 0 |a Introduction -- Conservation Equations of Fluid Flow -- Partial Differential Equations of Boundary Layer of Nanofluid's Natural Convection -- Ordinary Differential Equations of Boundary Layer of Nanofluid's Natural Convection -- Mathematical Model of Variable Physical Properties of Nanofluids -- Numerical Solutions of Velocity and Temperature Fields -- Skin-Friction Coefficient -- Predictive Formula of Wall Temperature Gradient -- Predictive Formulae on Heat Transfer of Al2O3-Water Nanofluid's Natural Convection -- Calculation Examples by Using the Predictive Formulae on Heat Transfer -- Conversion Factors on Heat Transfer of Nanofluid's Natural Convection -- Numerical Simulation of Conversion Factors on Heat Transfer -- Conversion Formulae on of Heat Transfer of Al2O3-Water Nanofluid's Natural Convection -- Calculation Examples on Heat Transfer by Using Conversion Formulae -- Postscript. 
520 |a This book presents a theoretical study of heat transfer due to laminar natural convection of nanofluids, using Al2O3-water nanofluid as an example. An innovative method of similarity transformation of velocity fields on laminar boundary layers is applied for the development of a mathematical governing model of natural convection with actual nanofluids, and a novel model of the nanofluid's variable thermophysical properties is derived by a mathematical analysis based on the developed model of variable physical properties of fluids combined with the model of the nanofluid's thermal conductivity and viscosity. Based on these, the physical property factors of nanofluids are produced, which leads to a simultaneous solution for deep investigations of hydrodynamics and heat transfer of nanofluid's natural convection. The book also proposes novel predictive formulae for the evaluation of heat transfer of Al2O3-water nanofluid's natural convection. The formulae have reliable theoretical and practical value because they are developed by rigorous theoretical analysis of heat transfer combined with full consideration of the effects of the temperature-dependent physical properties of nanofluids and the nanoparticle shape factor and concentration, as well as variations of fluid boundary temperatures. The conversion factors proposed help to turn the heat transfer coefficient and rate of fluid natural convection into those of nanofluid natural convection. Furthermore, several calculation examples are provided to demonstrate the heat transfer application of the proposed predictive formulae. 
650 0 |a Heat  |x Transmission.  |0 http://id.loc.gov/authorities/subjects/sh85059767 
650 0 |a Laminar flow.  |0 http://id.loc.gov/authorities/subjects/sh85074205 
650 0 |a Nanofluids.  |0 http://id.loc.gov/authorities/subjects/sh2007001902 
650 7 |a TECHNOLOGY & ENGINEERING  |x Mechanical.  |2 bisacsh 
650 7 |a Heat  |x Transmission.  |2 fast  |0 (OCoLC)fst00953826 
650 7 |a Laminar flow.  |2 fast  |0 (OCoLC)fst00991079 
650 7 |a Nanofluids.  |2 fast  |0 (OCoLC)fst01742507 
655 4 |a Electronic books. 
700 1 |a Zhong, Liang-Cai,  |e author. 
776 0 8 |i Print version:  |z 3319944029  |z 9783319944029  |w (OCoLC)1037806384 
830 0 |a Heat and mass transfer.  |0 http://id.loc.gov/authorities/names/n99044817 
903 |a HeVa 
929 |a oclccm 
999 f f |i 3395cf0e-08b4-5167-a716-36e343055542  |s 93395942-dbaa-5e28-8065-3cdd9f3e7687 
928 |t Library of Congress classification  |a TJ260 .S53 2019  |l Online  |c UC-FullText  |u https://link.springer.com/10.1007/978-3-319-94403-6  |z Springer Nature  |g ebooks  |i 12555342