Data-driven wireless networks : a compressive spectrum approach /

Saved in:
Bibliographic Details
Author / Creator:Gao, Yue, author.
Imprint:London : Springer, [2019]
Description:1 online resource
Language:English
Series:SpringerBriefs in electrical and computer engineering
SpringerBriefs in electrical and computer engineering.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11746050
Hidden Bibliographic Details
Other authors / contributors:Qin, Zhijin, author.
ISBN:9783030002909
303000290X
9783030002893
3030002896
Notes:Print version record.
Summary:This SpringerBrief discusses the applications of spare representation in wireless communications, with a particular focus on the most recent developed compressive sensing (CS) enabled approaches. With the help of sparsity property, sub-Nyquist sampling can be achieved in wideband cognitive radio networks by adopting compressive sensing, which is illustrated in this brief, and it starts with a comprehensive overview of compressive sensing principles. Subsequently, the authors present a complete framework for data-driven compressive spectrum sensing in cognitive radio networks, which guarantees robustness, low-complexity, and security. Particularly, robust compressive spectrum sensing, low-complexity compressive spectrum sensing, and secure compressive sensing based malicious user detection are proposed to address the various issues in wideband cognitive radio networks. Correspondingly, the real-world signals and data collected by experiments carried out during TV white space pilot trial enables data-driven compressive spectrum sensing. The collected data are analysed and used to verify our designs and provide significant insights on the potential of applying compressive sensing to wideband spectrum sensing.
Other form:Print version: Gao, Yue. Data-driven wireless networks. London : Springer, [2019] 3030002896 9783030002893

MARC

LEADER 00000cam a2200000Ii 4500
001 11746050
006 m o d
007 cr cnu---unuuu
008 181023s2019 enk ob 000 0 eng d
005 20240509213817.4
015 |a GBB8J9726  |2 bnb 
016 7 |a 019099394  |2 Uk 
019 |a 1059260158 
020 |a 9783030002909  |q (electronic bk.) 
020 |a 303000290X  |q (electronic bk.) 
020 |z 9783030002893  |q (paperback) 
020 |z 3030002896  |q (paperback) 
035 |a (OCoLC)1057550229  |z (OCoLC)1059260158 
035 9 |a (OCLCCM-CC)1057550229 
037 |a com.springer.onix.9783030002909  |b Springer Nature 
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d EBLCP  |d GW5XE  |d YDX  |d OCLCF  |d UKMGB  |d UAB  |d CAUOI  |d BNG  |d OH1  |d COO  |d OCLCQ 
049 |a MAIN 
050 4 |a TK7872.D48  |b G36 2019eb 
072 7 |a COM  |x 000000  |2 bisacsh 
100 1 |a Gao, Yue,  |e author.  |0 http://id.loc.gov/authorities/names/n2011076293 
245 1 0 |a Data-driven wireless networks :  |b a compressive spectrum approach /  |c Yue Gao, Zhijin Qin. 
264 1 |a London :  |b Springer,  |c [2019] 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a SpringerBriefs in electrical and computer engineering 
505 0 |a Part I : Background -- Introduction -- Sparse representation in wireless networks -- Part II : Compressive spectrum sensing algorithms -- Data-driven compressive spectrum sensing -- Robust compressive spectrum sensing -- Secure compressive spectrum sensing -- Part III : Conclusions -- Conclusions and future work. 
520 |a This SpringerBrief discusses the applications of spare representation in wireless communications, with a particular focus on the most recent developed compressive sensing (CS) enabled approaches. With the help of sparsity property, sub-Nyquist sampling can be achieved in wideband cognitive radio networks by adopting compressive sensing, which is illustrated in this brief, and it starts with a comprehensive overview of compressive sensing principles. Subsequently, the authors present a complete framework for data-driven compressive spectrum sensing in cognitive radio networks, which guarantees robustness, low-complexity, and security. Particularly, robust compressive spectrum sensing, low-complexity compressive spectrum sensing, and secure compressive sensing based malicious user detection are proposed to address the various issues in wideband cognitive radio networks. Correspondingly, the real-world signals and data collected by experiments carried out during TV white space pilot trial enables data-driven compressive spectrum sensing. The collected data are analysed and used to verify our designs and provide significant insights on the potential of applying compressive sensing to wideband spectrum sensing. 
588 0 |a Print version record. 
650 0 |a Wireless sensor networks.  |0 http://id.loc.gov/authorities/subjects/sh2008004547 
650 0 |a Internet of things.  |0 http://id.loc.gov/authorities/subjects/sh2013000266 
650 7 |a COMPUTERS  |x General.  |2 bisacsh 
650 7 |a Communications engineering  |x telecommunications.  |2 bicssc 
650 7 |a WAP (wireless) technology.  |2 bicssc 
650 7 |a Internet of things.  |2 fast  |0 (OCoLC)fst01894151 
650 7 |a Wireless sensor networks.  |2 fast  |0 (OCoLC)fst01746575 
655 4 |a Electronic books. 
700 1 |a Qin, Zhijin,  |e author. 
776 0 8 |i Print version:  |a Gao, Yue.  |t Data-driven wireless networks.  |d London : Springer, [2019]  |z 3030002896  |z 9783030002893  |w (OCoLC)1047650926 
830 0 |a SpringerBriefs in electrical and computer engineering.  |0 http://id.loc.gov/authorities/names/no2011108018 
903 |a HeVa 
929 |a oclccm 
999 f f |i 71ec2946-56ec-563e-9596-407fc91f073a  |s 115e4253-21f3-5de7-9287-55d0df6d101f 
928 |t Library of Congress classification  |a TK7872.D48 G36 2019eb  |l Online  |c UC-FullText  |u https://link.springer.com/10.1007/978-3-030-00290-9  |z Springer Nature  |g ebooks  |i 12558013