Embedded deep learning : algorithms, architectures and circuits for always-on neural network processing /
Saved in:
Author / Creator: | Moons, Bert, author. |
---|---|
Imprint: | Cham : Springer, 2018. ©2019 |
Description: | 1 online resource (xvi, 206 pages) |
Language: | English |
Subject: | |
Format: | E-Resource Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/11746434 |
MARC
LEADER | 00000cam a2200000Ii 4500 | ||
---|---|---|---|
001 | 11746434 | ||
005 | 20210625185008.1 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 181026t20182019sz ob 001 0 eng d | ||
015 | |a GBB8K7026 |2 bnb | ||
016 | 7 | |a 019109077 |2 Uk | |
019 | |a 1059553187 | ||
020 | |a 9783319992235 |q (electronic bk.) | ||
020 | |a 3319992236 |q (electronic bk.) | ||
020 | |z 9783319992228 | ||
020 | |z 3319992228 | ||
035 | |a (OCoLC)1059124864 |z (OCoLC)1059553187 | ||
035 | 9 | |a (OCLCCM-CC)1059124864 | |
037 | |a com.springer.onix.9783319992235 |b Springer Nature | ||
040 | |a N$T |b eng |e rda |e pn |c N$T |d N$T |d YDX |d EBLCP |d GW5XE |d OCLCF |d UKMGB |d CAUOI |d UKAHL |d OCLCQ |d VLB | ||
049 | |a MAIN | ||
050 | 4 | |a LB1065 |b .M66 2018eb | |
100 | 1 | |a Moons, Bert, |e author. | |
245 | 1 | 0 | |a Embedded deep learning : |b algorithms, architectures and circuits for always-on neural network processing / |c Bert Moons, Daniel Bankman, Marian Verhelst. |
264 | 1 | |a Cham : |b Springer, |c 2018. | |
264 | 4 | |c ©2019 | |
300 | |a 1 online resource (xvi, 206 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
588 | 0 | |a Online resource; title from PDF title page (EBSCO, viewed October 29, 2018) | |
504 | |a Includes bibliographical references and index. | ||
505 | 0 | |a Intro; Preface; Acknowledgments; Contents; Acronyms; 1 Embedded Deep Neural Networks; 1.1 Introduction; 1.2 Machine Learning; 1.2.1 Tasks, T; 1.2.2 Performance Measures, P; 1.2.3 Experience, E; 1.2.3.1 Supervised Learning; 1.2.3.2 Unsupervised Learning; 1.3 Deep Learning; 1.3.1 Deep Feed-Forward Neural Networks; 1.3.2 Convolutional Neural Networks; 1.3.3 Recurrent Neural Networks; 1.3.4 Training Deep Neural Networks; 1.3.4.1 Loss Functions; 1.3.4.2 Backpropagation; 1.3.4.3 Optimization; 1.3.4.4 Data Sets; 1.3.4.5 Regularization; 1.3.4.6 Training Frameworks | |
505 | 8 | |a 1.4 Challenges for Embedded Deep Neural Networks1.5 Book Contributions; References; 2 Optimized Hierarchical Cascaded Processing; 2.1 Introduction; 2.2 Hierarchical Cascaded Systems; 2.2.1 Generalizing Two-Stage Wake-Up Systems; 2.2.2 Hierarchical Cost, Precision, and Recall; 2.2.3 A Roofline Model for Hierarchical Classifiers; 2.2.4 Optimized Hierarchical Cascaded Sensing; 2.3 General Proof of Concept; 2.3.1 System Description; 2.3.2 Input Statistics; 2.3.3 Experiments; 2.3.3.1 Optimal Number of Stages; 2.3.3.2 Optimal Stage Metrics in a Hierarchy; 2.3.4 Conclusion | |
505 | 8 | |a 2.4 Case study: Hierarchical, CNN-Based Face Recognition2.4.1 A Face Recognition Hierarchy; 2.4.2 Hierarchical Cost, Precision, and Recall; 2.4.3 An Optimized Face Recognition Hierarchy; 2.5 Conclusion; References; 3 Hardware-Algorithm Co-optimizations; 3.1 An Introduction to Hardware-Algorithm Co-optimization; 3.1.1 Exploiting Network Structure; 3.1.2 Enhancing and Exploiting Sparsity; 3.1.3 Enhancing and Exploiting Fault-Tolerance; 3.2 Energy Gains in Low-Precision Neural Networks; 3.2.1 Energy Consumption of Off-Chip Memory-Access; 3.2.2 Generic Hardware Platform Modeling | |
505 | 8 | |a 3.3 Test-Time Fixed-Point Neural Networks3.3.1 Analysis and Experiments; 3.3.2 Influence of Quantization on Classification Accuracy; 3.3.2.1 Uniform Quantization and Per-Layer Rescaling; 3.3.2.2 Per-Layer Quantization; 3.3.3 Energy in Sparse FPNNs; 3.3.4 Results; 3.3.5 Discussion; 3.4 Train-Time Quantized Neural Networks; 3.4.1 Training QNNs; 3.4.1.1 Train-Time Quantized Weights; 3.4.1.2 Train-Time Quantized Activations; 3.4.1.3 QNN Input Layers; 3.4.1.4 Quantized Training; 3.4.2 Energy in QNNs; 3.4.3 Experiments; 3.4.3.1 Benchmarks; 3.4.3.2 QNN Topologies; 3.4.4 Results; 3.4.5 Discussion | |
505 | 8 | |a 3.5 Clustered Neural Networks3.6 Conclusion; References; 4 Circuit Techniques for Approximate Computing; 4.1 Introducing the Approximate Computing Paradigm; 4.2 Approximate Computing Techniques; 4.2.1 Resilience Identification and Quality Management; 4.2.2 Approximate Circuits; 4.2.3 Approximate Architectures; 4.2.4 Approximate Software; 4.2.5 Discussion; 4.3 DVAFS: Dynamic-Voltage-Accuracy-Frequency-Scaling; 4.3.1 DVAFS Basics; 4.3.1.1 Introducing the DVAFS Energy-Accuracy Trade-Off; 4.3.1.2 Precision Scaling in DVAFS; 4.3.2 Resilience Identification for DVAFS; 4.3.3 Energy Gains in DVAFS | |
650 | 0 | |a Education |x Data processing. |0 http://id.loc.gov/authorities/subjects/sh85041001 | |
650 | 0 | |a Learning, Psychology of. |0 http://id.loc.gov/authorities/subjects/sh85075526 | |
650 | 0 | |a Motivation in education. |0 http://id.loc.gov/authorities/subjects/sh85087566 | |
650 | 7 | |a EDUCATION |x Essays. |2 bisacsh | |
650 | 7 | |a EDUCATION |x Organizations & Institutions. |2 bisacsh | |
650 | 7 | |a EDUCATION |x Reference. |2 bisacsh | |
650 | 7 | |a Imaging systems & technology. |2 bicssc | |
650 | 7 | |a Electronics engineering. |2 bicssc | |
650 | 7 | |a Circuits & components. |2 bicssc | |
650 | 7 | |a Education |x Data processing. |2 fast |0 (OCoLC)fst00902579 | |
650 | 7 | |a Learning, Psychology of. |2 fast |0 (OCoLC)fst00995009 | |
650 | 7 | |a Motivation in education. |2 fast |0 (OCoLC)fst01027541 | |
655 | 4 | |a Electronic books. | |
700 | 1 | |a Bankman, Daniel, |e author. | |
700 | 1 | |a Verhelst, Marian, |e author. | |
776 | 0 | 8 | |i Print version: |a Moons, Bert. |t Embedded deep learning. |d Cham : Springer, 2018 |z 3319992228 |z 9783319992228 |w (OCoLC)1044854003 |
903 | |a HeVa | ||
929 | |a oclccm | ||
999 | f | f | |i eddba5fa-6b29-5721-8647-ddee32043b91 |s 6c4d2dea-0cb4-5fa5-b708-25af303347bd |
928 | |t Library of Congress classification |a LB1065 .M66 2018eb |l Online |c UC-FullText |u https://link.springer.com/10.1007/978-3-319-99223-5 |z Springer Nature |g ebooks |i 12558214 |