Embedded deep learning : algorithms, architectures and circuits for always-on neural network processing /

Saved in:
Bibliographic Details
Author / Creator:Moons, Bert, author.
Imprint:Cham : Springer, 2018.
©2019
Description:1 online resource (xvi, 206 pages)
Language:English
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11746434
Hidden Bibliographic Details
Other authors / contributors:Bankman, Daniel, author.
Verhelst, Marian, author.
ISBN:9783319992235
3319992236
9783319992228
3319992228
Notes:Includes bibliographical references and index.
Online resource; title from PDF title page (EBSCO, viewed October 29, 2018)
Other form:Print version: Moons, Bert. Embedded deep learning. Cham : Springer, 2018 3319992228 9783319992228

MARC

LEADER 00000cam a2200000Ii 4500
001 11746434
005 20210625185008.1
006 m o d
007 cr cnu---unuuu
008 181026t20182019sz ob 001 0 eng d
015 |a GBB8K7026  |2 bnb 
016 7 |a 019109077  |2 Uk 
019 |a 1059553187 
020 |a 9783319992235  |q (electronic bk.) 
020 |a 3319992236  |q (electronic bk.) 
020 |z 9783319992228 
020 |z 3319992228 
035 |a (OCoLC)1059124864  |z (OCoLC)1059553187 
035 9 |a (OCLCCM-CC)1059124864 
037 |a com.springer.onix.9783319992235  |b Springer Nature 
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d YDX  |d EBLCP  |d GW5XE  |d OCLCF  |d UKMGB  |d CAUOI  |d UKAHL  |d OCLCQ  |d VLB 
049 |a MAIN 
050 4 |a LB1065  |b .M66 2018eb 
100 1 |a Moons, Bert,  |e author. 
245 1 0 |a Embedded deep learning :  |b algorithms, architectures and circuits for always-on neural network processing /  |c Bert Moons, Daniel Bankman, Marian Verhelst. 
264 1 |a Cham :  |b Springer,  |c 2018. 
264 4 |c ©2019 
300 |a 1 online resource (xvi, 206 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Online resource; title from PDF title page (EBSCO, viewed October 29, 2018) 
504 |a Includes bibliographical references and index. 
505 0 |a Intro; Preface; Acknowledgments; Contents; Acronyms; 1 Embedded Deep Neural Networks; 1.1 Introduction; 1.2 Machine Learning; 1.2.1 Tasks, T; 1.2.2 Performance Measures, P; 1.2.3 Experience, E; 1.2.3.1 Supervised Learning; 1.2.3.2 Unsupervised Learning; 1.3 Deep Learning; 1.3.1 Deep Feed-Forward Neural Networks; 1.3.2 Convolutional Neural Networks; 1.3.3 Recurrent Neural Networks; 1.3.4 Training Deep Neural Networks; 1.3.4.1 Loss Functions; 1.3.4.2 Backpropagation; 1.3.4.3 Optimization; 1.3.4.4 Data Sets; 1.3.4.5 Regularization; 1.3.4.6 Training Frameworks 
505 8 |a 1.4 Challenges for Embedded Deep Neural Networks1.5 Book Contributions; References; 2 Optimized Hierarchical Cascaded Processing; 2.1 Introduction; 2.2 Hierarchical Cascaded Systems; 2.2.1 Generalizing Two-Stage Wake-Up Systems; 2.2.2 Hierarchical Cost, Precision, and Recall; 2.2.3 A Roofline Model for Hierarchical Classifiers; 2.2.4 Optimized Hierarchical Cascaded Sensing; 2.3 General Proof of Concept; 2.3.1 System Description; 2.3.2 Input Statistics; 2.3.3 Experiments; 2.3.3.1 Optimal Number of Stages; 2.3.3.2 Optimal Stage Metrics in a Hierarchy; 2.3.4 Conclusion 
505 8 |a 2.4 Case study: Hierarchical, CNN-Based Face Recognition2.4.1 A Face Recognition Hierarchy; 2.4.2 Hierarchical Cost, Precision, and Recall; 2.4.3 An Optimized Face Recognition Hierarchy; 2.5 Conclusion; References; 3 Hardware-Algorithm Co-optimizations; 3.1 An Introduction to Hardware-Algorithm Co-optimization; 3.1.1 Exploiting Network Structure; 3.1.2 Enhancing and Exploiting Sparsity; 3.1.3 Enhancing and Exploiting Fault-Tolerance; 3.2 Energy Gains in Low-Precision Neural Networks; 3.2.1 Energy Consumption of Off-Chip Memory-Access; 3.2.2 Generic Hardware Platform Modeling 
505 8 |a 3.3 Test-Time Fixed-Point Neural Networks3.3.1 Analysis and Experiments; 3.3.2 Influence of Quantization on Classification Accuracy; 3.3.2.1 Uniform Quantization and Per-Layer Rescaling; 3.3.2.2 Per-Layer Quantization; 3.3.3 Energy in Sparse FPNNs; 3.3.4 Results; 3.3.5 Discussion; 3.4 Train-Time Quantized Neural Networks; 3.4.1 Training QNNs; 3.4.1.1 Train-Time Quantized Weights; 3.4.1.2 Train-Time Quantized Activations; 3.4.1.3 QNN Input Layers; 3.4.1.4 Quantized Training; 3.4.2 Energy in QNNs; 3.4.3 Experiments; 3.4.3.1 Benchmarks; 3.4.3.2 QNN Topologies; 3.4.4 Results; 3.4.5 Discussion 
505 8 |a 3.5 Clustered Neural Networks3.6 Conclusion; References; 4 Circuit Techniques for Approximate Computing; 4.1 Introducing the Approximate Computing Paradigm; 4.2 Approximate Computing Techniques; 4.2.1 Resilience Identification and Quality Management; 4.2.2 Approximate Circuits; 4.2.3 Approximate Architectures; 4.2.4 Approximate Software; 4.2.5 Discussion; 4.3 DVAFS: Dynamic-Voltage-Accuracy-Frequency-Scaling; 4.3.1 DVAFS Basics; 4.3.1.1 Introducing the DVAFS Energy-Accuracy Trade-Off; 4.3.1.2 Precision Scaling in DVAFS; 4.3.2 Resilience Identification for DVAFS; 4.3.3 Energy Gains in DVAFS 
650 0 |a Education  |x Data processing.  |0 http://id.loc.gov/authorities/subjects/sh85041001 
650 0 |a Learning, Psychology of.  |0 http://id.loc.gov/authorities/subjects/sh85075526 
650 0 |a Motivation in education.  |0 http://id.loc.gov/authorities/subjects/sh85087566 
650 7 |a EDUCATION  |x Essays.  |2 bisacsh 
650 7 |a EDUCATION  |x Organizations & Institutions.  |2 bisacsh 
650 7 |a EDUCATION  |x Reference.  |2 bisacsh 
650 7 |a Imaging systems & technology.  |2 bicssc 
650 7 |a Electronics engineering.  |2 bicssc 
650 7 |a Circuits & components.  |2 bicssc 
650 7 |a Education  |x Data processing.  |2 fast  |0 (OCoLC)fst00902579 
650 7 |a Learning, Psychology of.  |2 fast  |0 (OCoLC)fst00995009 
650 7 |a Motivation in education.  |2 fast  |0 (OCoLC)fst01027541 
655 4 |a Electronic books. 
700 1 |a Bankman, Daniel,  |e author. 
700 1 |a Verhelst, Marian,  |e author. 
776 0 8 |i Print version:  |a Moons, Bert.  |t Embedded deep learning.  |d Cham : Springer, 2018  |z 3319992228  |z 9783319992228  |w (OCoLC)1044854003 
903 |a HeVa 
929 |a oclccm 
999 f f |i eddba5fa-6b29-5721-8647-ddee32043b91  |s 6c4d2dea-0cb4-5fa5-b708-25af303347bd 
928 |t Library of Congress classification  |a LB1065 .M66 2018eb  |l Online  |c UC-FullText  |u https://link.springer.com/10.1007/978-3-319-99223-5  |z Springer Nature  |g ebooks  |i 12558214