Empirical likelihood and quantile methods for time series : efficiency, robustness, optimality, and prediction /

Saved in:
Bibliographic Details
Author / Creator:Liu, Yan, author.
Imprint:Singapore : Springer, [2018]
©2018
Description:1 online resource
Language:English
Series:Springer briefs in statistics. JSS research series in statistics
SpringerBriefs in statistics. JSS research series in statistics.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11761239
Hidden Bibliographic Details
Other authors / contributors:Akashi, Fumiya, author.
Taniguchi, Masanobu, author.
ISBN:9789811001529
9811001529
9789811001512
9811001510
9789811001512
9789811001536
9811001537
Digital file characteristics:text file PDF
Notes:Includes bibliographical references and index.
Vendor-supplied metadata.
Summary:This book integrates the fundamentals of asymptotic theory of statistical inference for time series under nonstandard settings, e.g., infinite variance processes, not only from the point of view of efficiency but also from that of robustness and optimality by minimizing prediction error. This is the first book to consider the generalized empirical likelihood applied to time series models in frequency domain and also the estimation motivated by minimizing quantile prediction error without assumption of true model. It provides the reader with a new horizon for understanding the prediction problem that occurs in time series modeling and a contemporary approach of hypothesis testing by the generalized empirical likelihood method. Nonparametric aspects of the methods proposed in this book also satisfactorily address economic and financial problems without imposing redundantly strong restrictions on the model, which has been true until now. Dealing with infinite variance processes makes analysis of economic and financial data more accurate under the existing results from the demonstrative research. The scope of applications, however, is expected to apply to much broader academic fields. The methods are also sufficiently flexible in that they represent an advanced and unified development of prediction form including multiple-point extrapolation, interpolation, and other incomplete past forecastings. Consequently, they lead readers to a good combination of efficient and robust estimate and test, and discriminate pivotal quantities contained in realistic time series models.
Other form:Printed edition: 9789811001512
Printed edition: 9789811001536
Standard no.:10.1007/978-981-10-0152-9

MARC

LEADER 00000cam a2200000Ii 4500
001 11761239
005 20210625185207.5
006 m o d
007 cr cnu|||unuuu
008 181210s2018 si ob 001 0 eng d
015 |a GBB966604  |2 bnb 
016 7 |a 019335945  |2 Uk 
019 |a 1080595865  |a 1086447532  |a 1122847421  |a 1126131573  |a 1162777317 
020 |a 9789811001529  |q (electronic bk.) 
020 |a 9811001529  |q (electronic bk.) 
020 |z 9789811001512 
020 |a 9811001510 
020 |a 9789811001512 
020 |a 9789811001536  |q (print) 
020 |a 9811001537 
024 7 |a 10.1007/978-981-10-0152-9  |2 doi 
035 |a (OCoLC)1078636341  |z (OCoLC)1080595865  |z (OCoLC)1086447532  |z (OCoLC)1122847421  |z (OCoLC)1126131573  |z (OCoLC)1162777317 
035 9 |a (OCLCCM-CC)1078636341 
037 |a com.springer.onix.9789811001529  |b Springer Nature 
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d YDX  |d EBLCP  |d GW5XE  |d UPM  |d OCLCF  |d CAUOI  |d STF  |d FIE  |d UKMGB  |d OCLCQ  |d LEATE  |d OCLCQ  |d VT2  |d OCLCQ 
049 |a MAIN 
050 4 |a QA280 
066 |c (S 
072 7 |a MAT  |x 003000  |2 bisacsh 
072 7 |a MAT  |x 029000  |2 bisacsh 
072 7 |a PBT  |2 bicssc 
072 7 |a PBT  |2 thema 
100 1 |a Liu, Yan,  |e author. 
245 1 0 |a Empirical likelihood and quantile methods for time series :  |b efficiency, robustness, optimality, and prediction /  |c Yan Liu, Fumiya Akashi, Masanobu Taniguchi. 
264 1 |a Singapore :  |b Springer,  |c [2018] 
264 4 |c ©2018 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer briefs in statistics. JSS research series in statistics 
504 |a Includes bibliographical references and index. 
588 0 |a Vendor-supplied metadata. 
505 0 |a Intro; Preface; Contents; 1 Introduction; 1.1 Stationary Time Series; 1.2 Prediction Problem; 1.3 Interpolation and Extrapolation Problem; 1.4 Robust Interpolation and Extrapolation; 2 Parameter Estimation Based on Prediction; 2.1 Introduction; 2.1.1 Location Disparity; 2.1.2 Scale Disparity; 2.1.3 A New Disparity Based on Prediction; 2.2 Fundamentals of the New Disparity; 2.3 Parameter Estimation Based on Disparity; 2.3.1 Finite Variance Innovations Case; 2.3.2 Infinite Variance Innovations Case; 2.4 Efficiency and Robustness; 2.4.1 Robustness Against the Fourth-Order Cumulant 
505 8 |a 5 Self-weighted GEL Methods for Infinite Variance Processes5.1 Introduction to Self-weighted Least Absolute Deviations Approach; 5.2 Self-weighted GEL Statistics; 5.3 Application to the Change Point Test; 5.4 Numerical Studies; 5.5 Auxiliary Results; Bibliography; ; Index 
520 |a This book integrates the fundamentals of asymptotic theory of statistical inference for time series under nonstandard settings, e.g., infinite variance processes, not only from the point of view of efficiency but also from that of robustness and optimality by minimizing prediction error. This is the first book to consider the generalized empirical likelihood applied to time series models in frequency domain and also the estimation motivated by minimizing quantile prediction error without assumption of true model. It provides the reader with a new horizon for understanding the prediction problem that occurs in time series modeling and a contemporary approach of hypothesis testing by the generalized empirical likelihood method. Nonparametric aspects of the methods proposed in this book also satisfactorily address economic and financial problems without imposing redundantly strong restrictions on the model, which has been true until now. Dealing with infinite variance processes makes analysis of economic and financial data more accurate under the existing results from the demonstrative research. The scope of applications, however, is expected to apply to much broader academic fields. The methods are also sufficiently flexible in that they represent an advanced and unified development of prediction form including multiple-point extrapolation, interpolation, and other incomplete past forecastings. Consequently, they lead readers to a good combination of efficient and robust estimate and test, and discriminate pivotal quantities contained in realistic time series models. 
650 0 |a Time-series analysis.  |0 http://id.loc.gov/authorities/subjects/sh85135430 
650 0 |a Finance  |x Econometric models. 
650 7 |a MATHEMATICS  |x Applied.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x General.  |2 bisacsh 
650 1 4 |a Statistical Theory and Methods.  |0 http://scigraph.springernature.com/things/product-market-codes/S11001 
650 2 4 |a Statistics for Business, Management, Economics, Finance, Insurance.  |0 http://scigraph.springernature.com/things/product-market-codes/S17010 
650 2 4 |a Statistics for Social Sciences, Humanities, Law.  |0 http://scigraph.springernature.com/things/product-market-codes/S17040 
650 7 |a Finance  |x Econometric models.  |2 fast  |0 (OCoLC)fst00924377 
650 7 |a Time-series analysis.  |2 fast  |0 (OCoLC)fst01151190 
655 4 |a Electronic books. 
700 1 |a Akashi, Fumiya,  |e author. 
700 1 |a Taniguchi, Masanobu,  |e author. 
776 0 8 |i Printed edition:  |z 9789811001512 
776 0 8 |i Printed edition:  |z 9789811001536 
830 0 |a SpringerBriefs in statistics.  |p JSS research series in statistics.  |0 http://id.loc.gov/authorities/names/no2016036062 
880 8 |6 505-00/(S  |a 2.4.2 Asymptotic Efficiency2.4.3 Robustness Against Randomly Missing Observations; 2.5 Numerical Studies; 2.5.1 Relative Efficiency; 2.5.2 Robustness of the Disparity; 3 Quantile Method for Time Series; 3.1 Introduction; 3.2 Preliminaries; 3.3 Quantile Estimation; 3.4 Sinusoid Model; 3.5 Quantile Test; 3.6 Numerical Studies; 3.6.1 Finite Sample Performance; 3.6.2 Numerical Results for Estimation; 4 Empirical Likelihood Method for Time Series; 4.1 Introduction; 4.2 Empirical Likelihood in the Frequency Domain; 4.3 Empirical Likelihood for Symmetric α-stable Processes; 4.4 Numerical Studies 
903 |a HeVa 
929 |a oclccm 
999 f f |i 86796881-1117-52be-b368-22ec5150c6b2  |s a4a86446-683e-55d1-98eb-c83e13eb59de 
928 |t Library of Congress classification  |a QA280  |l Online  |c UC-FullText  |u https://link.springer.com/10.1007/978-981-10-0152-9  |z Springer Nature  |g ebooks  |i 12558776