Python for data mining quick syntax reference /

Saved in:
Bibliographic Details
Author / Creator:Porcu, Valentina, author.
Imprint:New York : Apress, [2018]
©2018
Description:1 online resource : illustrations (some color)
Language:English
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11761621
Hidden Bibliographic Details
ISBN:9781484241134
1484241134
1484241126
9781484241127
9781484241127
Digital file characteristics:text file PDF
Notes:Includes index.
Online resource; title from PDF title page (EBSCO, viewed December 27, 2018).
Summary:Learn how to use Python and its structures, how to install Python, and which tools are best suited for data analyst work. This book provides you with a handy reference and tutorial on topics ranging from basic Python concepts through to data mining, manipulating and importing datasets, and data analysis. Python for Data Mining Quick Syntax Reference covers each concept concisely, with many illustrative examples. You'll be introduced to several data mining packages, with examples of how to use each of them. The first part covers core Python including objects, lists, functions, modules, and error handling. The second part covers Python's most important data mining packages: NumPy and SciPy for mathematical functions and random data generation, pandas for dataframe management and data import, Matplotlib for drawing charts, and scikitlearn for machine learning.
Other form:Printed edition: 9781484241127
Printed edition: 9781484241141
Standard no.:10.1007/978-1-4842-4113-4
10.1007/978-1-4842-4
9781484241127

MARC

LEADER 00000cam a2200000Ii 4500
001 11761621
005 20210625184542.8
006 m o d
007 cr cnu|||unuuu
008 181224s2018 nyua o 001 0 eng d
015 |a GBB918126  |2 bnb 
016 7 |a 019215750  |2 Uk 
019 |a 1080275034  |a 1083983965  |a 1085910041  |a 1086428726  |a 1105176382  |a 1105705625  |a 1122816668  |a 1153016588  |a 1162788427 
020 |a 9781484241134  |q (electronic bk.) 
020 |a 1484241134  |q (electronic bk.) 
020 |a 1484241126 
020 |a 9781484241127 
020 |z 9781484241127 
024 7 |a 10.1007/978-1-4842-4113-4  |2 doi 
024 8 |a 10.1007/978-1-4842-4 
024 3 |a 9781484241127 
027 |a SPRINTER 
035 |a (OCoLC)1080190659  |z (OCoLC)1080275034  |z (OCoLC)1083983965  |z (OCoLC)1085910041  |z (OCoLC)1086428726  |z (OCoLC)1105176382  |z (OCoLC)1105705625  |z (OCoLC)1122816668  |z (OCoLC)1153016588  |z (OCoLC)1162788427 
035 9 |a (OCLCCM-CC)1080190659 
037 |a com.springer.onix.9781484241134  |b Springer Nature 
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d EBLCP  |d GW5XE  |d UAB  |d UKMGB  |d UPM  |d OCLCF  |d VT2  |d UMI  |d YDX  |d LEAUB  |d UKAHL  |d LQU  |d C6I  |d FVL  |d OCLCQ  |d COO  |d LEATE  |d OCLCQ  |d BRF 
049 |a MAIN 
050 4 |a QA76.9.D343 
072 7 |a COM  |x 000000  |2 bisacsh 
072 7 |a UMX  |2 bicssc 
072 7 |a UMX  |2 thema 
100 1 |a Porcu, Valentina,  |e author. 
245 1 0 |a Python for data mining quick syntax reference /  |c Valentina Porcu. 
264 1 |a New York :  |b Apress,  |c [2018] 
264 4 |c ©2018 
300 |a 1 online resource :  |b illustrations (some color) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
588 0 |a Online resource; title from PDF title page (EBSCO, viewed December 27, 2018). 
500 |a Includes index. 
505 0 |a Intro; Table of Contents; About the Author; About the Technical Reviewer; Introduction; Chapter 1: Getting Started; Installing Python; Editor and IDEs; Differences between Python2 and Python3; Work Directory; Using a Terminal; Summary; Chapter 2: Introductory Notes; Objects in Python; Reserved Terms for the System; Entering Comments in the Code; Types of Data; File Format; Operators; Mathematical Operators; Comparison and Membership Operators; Bitwise Operators; Assignment Operators; Operator Order; Indentation; Quotation Marks; Summary; Chapter 3: Basic Objects and Structures; Numbers 
505 8 |a Container ObjectsTuples; Lists; Dictionaries; Sets; Strings; Files; Immutability; Converting Formats; Summary; Chapter 4: Functions; Some words about functions in Python; Some Predefined Built-in Functions; Obtain Function Information; Create Your Own Functions; Save and run Your Own Modules and Files; Summary; Chapter 5: Conditional Instructions and Writing Functions; Conditional Instructions; if; if + else; elif; Loops; for; while; continue and break; Extend Functions with Conditional Instructions; map() and filter() Functions; The lambda Function; Scope; Summary 
505 8 |a Chapter 6: Other Basic ConceptsObject-oriented Programming; More on Objects; Classes; Inheritance; Modules; Methods; List Comprehension; Regular Expressions; User Input; Errors and Exceptions; Summary; Chapter 7: Importing Files; .csv Format; From the Web; In JSON; Other Formats; Summary; Chapter 8: pandas; Libraries for Data Mining; pandas; pandas: Series; pandas: Data Frames; pandas: Importing and Exporting Data; pandas: Data Manipulation; pandas: Missing Values; pandas: Merging Two Datasets; pandas: Basic Statistics; Summary; Chapter 9: SciPy and NumPy; SciPy; NumPy 
505 8 |a NumPy: Generating Random Numbers and SeedsSummary; Chapter 10: Matplotlib; Basic Plots; Pie Charts; Other Plots and Charts; Saving Plots and Charts; Selecting Plot and Chart Styles; More on Histograms; Summary; Chapter 11: Scikit-learn; What Is Machine Learning?; Import Datasets Included in Scikit-learn; Creation of Training and Testing Datasets; Preprocessing; Regression; K-Nearest Neighbors; Cross-validation; Support Vector Machine; Decision Trees; KMeans; Managing Dates; Data Sources; Index 
520 |a Learn how to use Python and its structures, how to install Python, and which tools are best suited for data analyst work. This book provides you with a handy reference and tutorial on topics ranging from basic Python concepts through to data mining, manipulating and importing datasets, and data analysis. Python for Data Mining Quick Syntax Reference covers each concept concisely, with many illustrative examples. You'll be introduced to several data mining packages, with examples of how to use each of them. The first part covers core Python including objects, lists, functions, modules, and error handling. The second part covers Python's most important data mining packages: NumPy and SciPy for mathematical functions and random data generation, pandas for dataframe management and data import, Matplotlib for drawing charts, and scikitlearn for machine learning. 
650 0 |a Python (Computer program language)  |0 http://id.loc.gov/authorities/subjects/sh96008834 
650 0 |a Data mining.  |0 http://id.loc.gov/authorities/subjects/sh97002073 
650 7 |a COMPUTERS  |x General.  |2 bisacsh 
650 7 |a Data mining.  |2 fast  |0 (OCoLC)fst00887946 
650 7 |a Python (Computer program language)  |2 fast  |0 (OCoLC)fst01084736 
655 0 |a Electronic books. 
655 4 |a Electronic books. 
776 0 8 |i Printed edition:  |z 9781484241127 
776 0 8 |i Printed edition:  |z 9781484241141 
903 |a HeVa 
929 |a oclccm 
999 f f |i 2d49f05f-71db-5421-bfed-b5ed4560cb61  |s c3b6232c-9177-5766-a4cd-dfeb405da7c3 
928 |t Library of Congress classification  |a QA76.9.D343  |l Online  |c UC-FullText  |u https://link.springer.com/10.1007/978-1-4842-4113-4  |z Springer Nature  |g ebooks  |i 12559116