Renewable energy : forecasting and risk management : Paris, France, June 7-9, 2017 /

Saved in:
Bibliographic Details
Imprint:Cham, Switzerland : Springer, 2018.
Description:1 online resource (xiii, 246 pages) : illustrations (some color).
Language:English
Series:Springer proceedings in mathematics & statistics, 2194-1009 ; volume 254
Springer proceedings in mathematics & statistics ; v. 254.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11762128
Hidden Bibliographic Details
Other authors / contributors:Drobinski, Philippe, editor.
Mougeot, Mathilde, editor.
Picard, Dominique, 1952- editor.
Plougonven, Riwal, editor.
Tankov, Peter, editor.
Workshop "Forecasting and Rick Management for Renewable Energy" (2017 : Paris, France)
ISBN:9783319990521
3319990527
9783319990514
Digital file characteristics:text file PDF
Notes:Online resource; title from PDF title page (SpringerLink, viewed January 11, 2019).
Summary:Gathering selected, revised and extended contributions from the conference 'Forecasting and Risk Management for Renewable Energy FOREWER', which took place in Paris in June 2017, this book focuses on the applications of statistics to the risk management and forecasting problems arising in the renewable energy industry. The different contributions explore all aspects of the energy production chain: forecasting and probabilistic modelling of renewable resources, including probabilistic forecasting approaches; modelling and forecasting of wind and solar power production; prediction of electricity demand; optimal operation of microgrids involving renewable production; and finally the effect of renewable production on electricity market prices. Written by experts in statistics, probability, risk management, economics and electrical engineering, this multidisciplinary volume will serve as a reference on renewable energy risk management and at the same time as a source of inspiration for statisticians and probabilists aiming to work on energy-related problems.--
Other form:Printed edition: 9783319990514
Printed edition: 9783319990538
Standard no.:10.1007/978-3-319-99052-1

MARC

LEADER 00000cam a2200000Ii 4500
001 11762128
006 m o d
007 cr cnu|||unuuu
008 190111s2018 sz a o 100 0 eng d
005 20240624213605.0
015 |a GBB918284  |2 bnb 
016 7 |a 019216846  |2 Uk 
019 |a 1083973581  |a 1122817347 
020 |a 9783319990521  |q (electronic bk.) 
020 |a 3319990527  |q (electronic bk.) 
020 |z 9783319990514  |q (print) 
024 7 |a 10.1007/978-3-319-99052-1  |2 doi 
035 |a (OCoLC)1081422313  |z (OCoLC)1083973581  |z (OCoLC)1122817347 
035 9 |a (OCLCCM-CC)1081422313 
037 |a com.springer.onix.9783319990521  |b Springer Nature 
040 |a GW5XE  |b eng  |e rda  |e pn  |c GW5XE  |d UKMGB  |d STF  |d OCLCF  |d MERER  |d FIE  |d UKAHL  |d UPM  |d LEAUB  |d LEATE 
049 |a MAIN 
050 4 |a TJ807.2 
072 7 |a PBW  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
072 7 |a PBW  |2 thema 
245 0 0 |a Renewable energy :  |b forecasting and risk management : Paris, France, June 7-9, 2017 /  |c Philippe Drobinski, Mathilde Mougeot, Dominique Picard, Riwal Plougonven, Peter Tankov, editors. 
264 1 |a Cham, Switzerland :  |b Springer,  |c 2018. 
300 |a 1 online resource (xiii, 246 pages) :  |b illustrations (some color). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer proceedings in mathematics & statistics,  |x 2194-1009 ;  |v volume 254 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed January 11, 2019). 
505 0 |a Part I Renewable energy: modeling and forecasting.- Alain Bensoussan and Alexandre Brouste -Marginal Weibull diffusion model for wind speed modeling and short-term forecasting .- Bastien Alonzo, Riwal Plougonven, Mathilde Mougeot, Aurélie Fischer, Aurore Dupré, and Philippe Drobinski-From Numerical Weather Prediction outputs to accurate localsurface wind speed : statistical modeling and forecasts. -- Mireille Bossy, Aurore Dupr´e, Philippe Drobinski, Laurent Violeau, and Christian Briard-Stochastic Lagrangian approach for wind farm simulation.- Jordi Badosa, Emmanuel Gobet, Maxime Grangereau and Daeyoung Kim-Day-ahead probabilistic forecast of solar irradiance: a Stochastic Differential Equation approach.- Mathilde Mougeot, Dominique Picard, Vincent Lefieux, Miranda Marchand-Homogeneous climate regions using learning algorithms.- Andrs Castrillejo, Jairo Cugliari, Fernando Massa, and Ignacio Ramirez- Electricity Demand Forecasting: the Uruguayan Case Eugene A. Feinberg and Jun Fei -A Flexible Mixed Additive-Multiplicative Model for Load Forecasting in a Smart Grid Setting.- Jérôme Collet and Michael Richard- A Generic Method for Density Forecasts Recalibration.- Part II Renewable energy: risk management.- Vera Silva, Miguel López-Botet Zulueta, Ye Wang, Paul Fourment,Timothee Hinchliffe, Alain Burtin, and Caroline Gatti-Bono-Technical and economic analysis of the European electricity system with 60% renewable energy sources.- Deschatre and Almut E. D. Veraart-A joint model for electricity spot prices and wind penetration with dependence in the Thomas.- James Cruise and Stan Zachary-The optimal control of storage for arbitrage and buffering, with energy applications.- Jérôme Collet, Olivier Féron, and Peter Tankov-Optimal management of a wind power plant with storage capacity.-References. 
520 |a Gathering selected, revised and extended contributions from the conference 'Forecasting and Risk Management for Renewable Energy FOREWER', which took place in Paris in June 2017, this book focuses on the applications of statistics to the risk management and forecasting problems arising in the renewable energy industry. The different contributions explore all aspects of the energy production chain: forecasting and probabilistic modelling of renewable resources, including probabilistic forecasting approaches; modelling and forecasting of wind and solar power production; prediction of electricity demand; optimal operation of microgrids involving renewable production; and finally the effect of renewable production on electricity market prices. Written by experts in statistics, probability, risk management, economics and electrical engineering, this multidisciplinary volume will serve as a reference on renewable energy risk management and at the same time as a source of inspiration for statisticians and probabilists aiming to work on energy-related problems.--  |c Provided by publisher. 
650 0 |a Renewable energy sources  |v Congresses. 
650 7 |a Renewable energy sources.  |2 fast  |0 (OCoLC)fst01094570 
655 7 |a Conference papers and proceedings.  |2 fast  |0 (OCoLC)fst01423772 
655 4 |a Electronic books. 
700 1 |a Drobinski, Philippe,  |e editor. 
700 1 |a Mougeot, Mathilde,  |e editor. 
700 1 |a Picard, Dominique,  |d 1952-  |e editor.  |0 http://id.loc.gov/authorities/names/n99026081 
700 1 |a Plougonven, Riwal,  |e editor. 
700 1 |a Tankov, Peter,  |e editor.  |0 http://id.loc.gov/authorities/names/n2003104518 
711 2 |a Workshop "Forecasting and Rick Management for Renewable Energy"  |d (2017 :  |c Paris, France) 
776 0 8 |i Printed edition:  |z 9783319990514 
776 0 8 |i Printed edition:  |z 9783319990538 
830 0 |a Springer proceedings in mathematics & statistics ;  |v v. 254.  |x 2194-1009  |0 http://id.loc.gov/authorities/names/no2013000283 
903 |a HeVa 
929 |a oclccm 
999 f f |i feef26e1-3b39-5be8-a034-ec517301585a  |s 23090e09-852a-5977-ac1b-3a14478e97e2 
928 |t Library of Congress classification  |a TJ807.2  |l Online  |c UC-FullText  |u https://link.springer.com/10.1007/978-3-319-99052-1  |z Springer Nature  |g ebooks  |i 12559815