Lectures on logarithmic algebraic geometry /

Saved in:
Bibliographic Details
Author / Creator:Ogus, Arthur, author.
Imprint:Cambridge, United Kingdom ; New York, NY : Cambridge University Press, 2018.
©2018
Description:xviii, 539 pages : illustrations ; 24 cm.
Language:English
Series:Cambridge studies in advanced mathematics ; 178
Cambridge studies in advanced mathematics ; 178.
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11763993
Hidden Bibliographic Details
ISBN:9781107187733
1107187737
9781316953563
Notes:Includes bibliographical references (pages 529-533) and indexes.
Summary:"This graduate textbook offers a self-contained introduction to the concepts and techniques of logarithmic geometry, a key tool for analyzing compactification and degeneration in algebraic geometry and number theory. It features a systematic exposition of the foundations of the field, from the basic results on convex geometry and commutative monoids to the theory of logarithmic schemes and their de Rham and Betti cohomology. " - publisher.
Other form:Electronic version : Ogus, Arthur. Lectures on logarithmic algebraic geometry. Cambridge : Cambridge University Press, 2018

MARC

LEADER 00000cam a2200000 i 4500
001 11763993
003 ICU
005 20190206143836.4
008 180430t20182018enka b 001 0 eng
010 |a 2018009845 
015 |a GBB8E5417  |2 bnb 
016 7 |a 019007459  |2 Uk 
020 |a 9781107187733  |q hardcover 
020 |a 1107187737  |q hardcover 
020 |z 9781316953563  |q electronic book 
035 |a (OCoLC)1023110425 
040 |a DLC  |b eng  |e rda  |c DLC  |d OCLCO  |d OCLCF  |d UKMGB  |d IPS  |d YDX  |d OCLCO  |d STF  |d CUI 
042 |a pcc 
049 |a CGUA 
050 0 0 |a QA565  |b .O38 2018 
082 0 0 |a 516.3/5  |2 23 
100 1 |a Ogus, Arthur,  |e author.  |0 http://id.loc.gov/authorities/names/n78021860  |1 http://viaf.org/viaf/52940414 
245 1 0 |a Lectures on logarithmic algebraic geometry /  |c Arthur Ogus, University of California, Berkeley. 
264 1 |a Cambridge, United Kingdom ;  |a New York, NY :  |b Cambridge University Press,  |c 2018. 
264 4 |c ©2018 
300 |a xviii, 539 pages :  |b illustrations ;  |c 24 cm. 
336 |a text  |b txt  |2 rdacontent  |0 http://id.loc.gov/vocabulary/contentTypes/txt 
337 |a unmediated  |b n  |2 rdamedia  |0 http://id.loc.gov/vocabulary/mediaTypes/n 
338 |a volume  |b nc  |2 rdacarrier  |0 http://id.loc.gov/vocabulary/carriers/nc 
490 1 |a Cambridge studies in advanced mathematics ;  |v 178 
504 |a Includes bibliographical references (pages 529-533) and indexes. 
505 0 |a The geometry of monoids -- Sheaves of monoids -- Logarithmic schemes -- Differentials and smoothness -- Betti and de Rham cohomology 
520 |a "This graduate textbook offers a self-contained introduction to the concepts and techniques of logarithmic geometry, a key tool for analyzing compactification and degeneration in algebraic geometry and number theory. It features a systematic exposition of the foundations of the field, from the basic results on convex geometry and commutative monoids to the theory of logarithmic schemes and their de Rham and Betti cohomology. " - publisher. 
650 0 |a Geometry, Algebraic  |v Textbooks. 
650 0 |a Logarithmic functions  |v Textbooks. 
650 0 |a Number theory  |v Textbooks. 
650 0 |a Compactifications  |v Textbooks. 
650 7 |a Compactifications.  |2 fast  |0 (OCoLC)fst00871290 
650 7 |a Geometry, Algebraic.  |2 fast  |0 (OCoLC)fst00940902 
650 7 |a Logarithmic functions.  |2 fast  |0 (OCoLC)fst01001932 
650 7 |a Number theory.  |2 fast  |0 (OCoLC)fst01041214 
655 7 |a Textbooks.  |2 fast  |0 (OCoLC)fst01423863 
776 0 8 |i Electronic version :  |a Ogus, Arthur.  |t Lectures on logarithmic algebraic geometry.  |d Cambridge : Cambridge University Press, 2018  |w (OCoLC)1066240998 
830 0 |a Cambridge studies in advanced mathematics ;  |v 178. 
903 |a HeVa 
929 |a cat 
999 f f |i 69a986c6-7e7a-5fe7-9c97-b0c766ec0b5a  |s ecf39b8a-ce5b-5d67-8f43-e6b072ed5ece 
928 |t Library of Congress classification  |a QA565.O38 2018  |l Eck  |c Eck-Eck  |i 11213838 
927 |t Library of Congress classification  |a QA565.O38 2018  |l Eck  |c Eck-Eck  |g SEPS  |b 115783664  |i 10062206