Elliptic integrals, elliptic functions and modular forms in quantum field theory /

Saved in:
Bibliographic Details
Imprint:Cham, Switzerland : Springer, 2019.
Description:1 online resource (xiii, 509 pages) : illustrations (some color)
Language:English
Series:Texts & monographs in symbolic computation, 0943-853X
Texts and monographs in symbolic computation,
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11781523
Hidden Bibliographic Details
Other authors / contributors:Blümlein, J. (Johannes), editor.
Schneider, Carsten, editor.
Paule, Peter, editor.
ISBN:9783030044800
3030044807
9783030044794
3030044793
9783030044794
9783030044817
3030044815
Digital file characteristics:text file PDF
Notes:Online resource; title from PDF title page (SpringerLink, viewed February 7, 2019).
Summary:This book includes review articles in the field of elliptic integrals, elliptic functions and modular forms intending to foster the discussion between theoretical physicists working on higher loop calculations and mathematicians working in the field of modular forms and functions and analytic solutions of higher order differential and difference equations.
Other form:Printed edition: 9783030044794
Printed edition: 9783030044817
Standard no.:10.1007/978-3-030-04480-0

MARC

LEADER 00000cam a2200000Ii 4500
001 11781523
005 20210625185343.3
006 m o d
007 cr cnu|||unuuu
008 190207s2019 sz a o 000 0 eng d
015 |a GBB931593  |2 bnb 
016 7 |a 019235096  |2 Uk 
019 |a 1088954065  |a 1090002590  |a 1091242061  |a 1110907448  |a 1122812091  |a 1156408578  |a 1162787787 
020 |a 9783030044800  |q (electronic bk.) 
020 |a 3030044807  |q (electronic bk.) 
020 |z 9783030044794  |q (print) 
020 |a 3030044793 
020 |a 9783030044794 
020 |a 9783030044817  |q (print) 
020 |a 3030044815 
024 7 |a 10.1007/978-3-030-04480-0  |2 doi 
035 |a (OCoLC)1084726571  |z (OCoLC)1088954065  |z (OCoLC)1090002590  |z (OCoLC)1091242061  |z (OCoLC)1110907448  |z (OCoLC)1122812091  |z (OCoLC)1156408578  |z (OCoLC)1162787787 
035 9 |a (OCLCCM-CC)1084726571 
037 |a com.springer.onix.9783030044800  |b Springer Nature 
040 |a GW5XE  |b eng  |e rda  |e pn  |c GW5XE  |d EBLCP  |d UAB  |d UKMGB  |d VT2  |d CEF  |d OCLCF  |d DKU  |d ESU  |d SNK  |d COO  |d OCLCQ  |d LEATE  |d UKAHL  |d OCLCQ  |d NLW  |d OCLCO 
049 |a MAIN 
050 4 |a QA343 
066 |c (S 
072 7 |a UYAM  |2 bicssc 
072 7 |a COM018000  |2 bisacsh 
072 7 |a UYAM  |2 thema 
245 0 0 |a Elliptic integrals, elliptic functions and modular forms in quantum field theory /  |c Johannes Blümlein, Carsten Schneider, Peter Paule, editors. 
264 1 |a Cham, Switzerland :  |b Springer,  |c 2019. 
300 |a 1 online resource (xiii, 509 pages) :  |b illustrations (some color) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Texts & monographs in symbolic computation,  |x 0943-853X 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed February 7, 2019). 
505 0 |a Intro; Preface; Contents; Contributors; Eta Quotients and Rademacher Sums; 1 Introduction; 2 Eta Quotients in Quantum Field Theory; 2.1 Atkin-Lehner Transformations of Eta Quotients; 2.2 Eichler Integrals of Eta Quotients for On-Shell Sunrise Integrals; 2.3 Eichler Integrals for Quasi-periods at Level 6; 3 Rademacher Sums for Fourier Coefficients of Eta Quotients; 3.1 Genus 0; 3.2 Further Examples of Integer Sequences; 3.3 Genus 1; 3.4 Rational Rademacher Sums; 3.5 Genus 2; 3.6 Genus 3; 3.7 Genus 4; 3.8 Genus 5; 3.9 Genus 6; 3.10 Genus 7; 3.11 Genus 8; 3.12 Genus 13; 3.13 Remarks 
505 8 |a 4 ConclusionsReferences; On a Class of Feynman Integrals Evaluating to Iterated Integrals of Modular Forms; 1 Introduction; 2 Periodic Functions and Periods; 3 Elliptic Curves; 4 Modular Forms; 5 Iterated Integrals; 6 Precision Calculations; 7 Picard-Fuchs Operators; 8 Feynman Integrals Evaluating to Iterated Integrals of Modular Forms; 9 Conclusions; References; Iterative Non-iterative Integrals in Quantum Field Theory; 1 Introduction; 2 Second-Order Differential Equations and 2F1 Solutions; 3 Iterative Non-iterative Integrals; 4 Numerical Representation 
520 |a This book includes review articles in the field of elliptic integrals, elliptic functions and modular forms intending to foster the discussion between theoretical physicists working on higher loop calculations and mathematicians working in the field of modular forms and functions and analytic solutions of higher order differential and difference equations. 
650 0 |a Elliptic functions.  |0 http://id.loc.gov/authorities/subjects/sh85052336 
650 0 |a Forms, Modular.  |0 http://id.loc.gov/authorities/subjects/sh85050826 
650 0 |a Quantum field theory.  |0 http://id.loc.gov/authorities/subjects/sh85109461 
650 1 4 |a Symbolic and Algebraic Manipulation.  |0 http://scigraph.springernature.com/things/product-market-codes/I17052 
650 2 4 |a Quantum Field Theories, String Theory.  |0 http://scigraph.springernature.com/things/product-market-codes/P19048 
650 2 4 |a Mathematical Physics.  |0 http://scigraph.springernature.com/things/product-market-codes/M35000 
650 7 |a Elliptic functions.  |2 fast  |0 (OCoLC)fst00908173 
650 7 |a Forms, Modular.  |2 fast  |0 (OCoLC)fst00932983 
650 7 |a Quantum field theory.  |2 fast  |0 (OCoLC)fst01085105 
655 0 |a Electronic books. 
655 4 |a Electronic books. 
700 1 |a Blümlein, J.  |q (Johannes),  |e editor.  |0 http://id.loc.gov/authorities/names/n93032457 
700 1 |a Schneider, Carsten,  |e editor. 
700 1 |a Paule, Peter,  |e editor.  |0 http://id.loc.gov/authorities/names/nb2011000006 
776 0 8 |i Printed edition:  |z 9783030044794 
776 0 8 |i Printed edition:  |z 9783030044817 
830 0 |a Texts and monographs in symbolic computation,  |x 0943-853X  |0 http://id.loc.gov/authorities/names/n93061753 
880 8 |6 505-00/(S  |a 4 Some Examples and Applications4.1 Elliptic Multiple Zeta Values as Iterated Integrals Over Modular Forms for Γ(2); 4.2 A Canonical Differential Equation for Some Classes of Hypergeometric Functions; 4.3 Modular Forms for Γ1(6) and the Sunrise and the Kite Integrals; 5 Conclusions and Outlook; References; One-Loop String Scattering Amplitudes as Iterated Eisenstein Integrals; 1 Introduction; 2 One-Loop Open-String Amplitudes, Planar and Non-planar; 2.1 General Setup, Planar and Non-planar; 2.2 Four-Point Amplitudes; 2.3 Five-Point Amplitudes; 2.4 Higher-Point Amplitudes 
880 8 |6 505-00/(S  |a 5 Representation in Terms of Modular Forms5.1 The Mathematical Framework; 5.2 The q-Representation of the Inhomogeneous Solution; 6 The ρ-Parameter; 7 Conclusions; References; Analytic Continuation of the Kite Family; 1 Introduction; 2 The Kite Family and Its Elliptic Curve; 3 Analytic Continuation; 4 An Application of the Picard-Lefschetz Formula; References; A Four-Point Function for the Planar QCD Massive Corrections to Top-Antitop Production in the Gluon-Fusion Channel; 1 Introduction; 2 Notations; 3 The Differential Equations; 3.1 Second Order Differential Equation 
880 8 |6 505-00/(S  |a 3.2 Homogeneous Solution and Maximal Cut3.3 Complete Solution; 3.4 The MIs mathcalT33 and mathcalT35; 4 Conclusions; References; From Modular Forms to Differential Equations for Feynman Integrals; 1 Introduction; 2 Terms and Definitions; 2.1 The Modular Group SL(2,mathbbZ) and Its Congruence Subgroups; 2.2 Modular Curves; 2.3 Modular Forms; 3 An Algebraic Representation of Modular Forms; 3.1 General Considerations; 3.2 A Basis for Modular Forms for Γ(2); 3.3 A Basis for Modular Forms for Γ0(2); 3.4 A Basis for Modular Forms for Γ0(4) and Γ0(6); 3.5 A Basis for Modular Forms for Γ1(6) 
903 |a HeVa 
929 |a oclccm 
999 f f |i 658d1c7d-fbc8-5fea-9325-b0c028648e45  |s 1f10bd4e-8ecd-5190-9be3-0727dd565780 
928 |t Library of Congress classification  |a QA343  |l Online  |c UC-FullText  |u https://link.springer.com/10.1007/978-3-030-04480-0  |z Springer Nature  |g ebooks  |i 12559282