|
|
|
|
LEADER |
00000cam a2200000Ka 4500 |
001 |
11826909 |
006 |
m o d |
007 |
cr |n|---||||| |
008 |
110205s2011 enka ob 001 0 eng d |
005 |
20240709210246.3 |
010 |
|
|
|z 2010038466
|
019 |
|
|
|a 701604997
|a 728835690
|a 796796352
|a 817934292
|a 828743389
|a 1114110783
|a 1162083665
|
020 |
|
|
|a 9780511916830
|
020 |
|
|
|a 0511916833
|
020 |
|
|
|a 0511915020
|q (electronic bk.)
|
020 |
|
|
|a 9780511915024
|q (electronic bk.)
|
020 |
|
|
|a 9780511918797
|q (electronic bk.)
|
020 |
|
|
|a 0511918798
|q (electronic bk.)
|
020 |
|
|
|a 9780511761621
|q (electronic bk.)
|
020 |
|
|
|a 0511761627
|q (electronic bk.)
|
020 |
|
|
|z 9780521193726
|q (hardback)
|
020 |
|
|
|z 0521193729
|q (hardback)
|
020 |
|
|
|a 1107214270
|
020 |
|
|
|a 9781107214279
|
020 |
|
|
|a 1282930702
|
020 |
|
|
|a 9781282930704
|
020 |
|
|
|a 9786612930706
|
020 |
|
|
|a 6612930705
|
020 |
|
|
|a 0511917813
|
020 |
|
|
|a 9780511917813
|
020 |
|
|
|a 0511913230
|
020 |
|
|
|a 9780511913235
|
035 |
|
|
|a (OCoLC)700691127
|z (OCoLC)701604997
|z (OCoLC)728835690
|z (OCoLC)796796352
|z (OCoLC)817934292
|z (OCoLC)828743389
|z (OCoLC)1114110783
|z (OCoLC)1162083665
|
035 |
|
9 |
|a (OCLCCM-CC)700691127
|
040 |
|
|
|a MERUC
|b eng
|e pn
|c MERUC
|d EBLCP
|d OCLCQ
|d IDEBK
|d GZM
|d YDXCP
|d CDX
|d E7B
|d SNK
|d REDDC
|d OCLCQ
|d N$T
|d OCLCQ
|d DEBSZ
|d OCLCQ
|d CAMBR
|d COU
|d ORE
|d OCLCQ
|d OTZ
|d OCLCF
|d NNO
|d OCLCQ
|d OCLCO
|d OCLCA
|d COO
|d YDX
|d OCLCO
|d INT
|d OCLCO
|d NRC
|d OCLCO
|d OCLCQ
|d OCLCA
|d U3W
|d AGLDB
|d BTN
|d MHW
|d INTCL
|d AUW
|d AU@
|d OCLCO
|d M8D
|d UKAHL
|d OCLCQ
|d OCLCO
|d OCLCQ
|d S8J
|d OCL
|d OCLCQ
|d NJP
|d OCLCQ
|d K6U
|d OCLCA
|d VLY
|d OCLCA
|
049 |
|
|
|a MAIN
|
050 |
|
4 |
|a QC718
|b .I435 2011eb
|
066 |
|
|
|c (S
|
072 |
|
7 |
|a TJF
|2 bicssc
|
072 |
|
7 |
|a SCI
|x 024000
|2 bisacsh
|
072 |
|
7 |
|a SCI
|x 041000
|2 bisacsh
|
072 |
|
7 |
|a SCI
|x 055000
|2 bisacsh
|
084 |
|
|
|a SCI022000
|2 bisacsh
|
100 |
1 |
|
|a Inan, Umran S.
|0 http://id.loc.gov/authorities/names/n98031635
|
245 |
1 |
0 |
|a Principles of plasma physics for engineers and scientists /
|c Umran Inan and Marek Gołkowski.
|
260 |
|
|
|a Cambridge ;
|a New York :
|b Cambridge University Press,
|c 2011.
|
300 |
|
|
|a 1 online resource (xiv, 270 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references and index.
|
520 |
|
|
|a Senior undergraduate/graduate introductory course text which combines mathematical rigor and qualitative explanations.
|
520 |
|
|
|a "This unified introduction provides the tools and techniques needed to analyze plasmas and connects plasma phenomena to other fields of study. Combining mathematical rigor with qualitative explanations, and linking theory to practice with example problems, this is a perfect textbook for senior undergraduate and graduate students taking one-semester introductory plasma physics courses. For the first time, material is presented in the context of unifying principles, illustrated using organizational charts, and structured in a successive progression from single particle motion, to kinetic theory and average values, through to collective phenomena of waves in plasma. This provides students with a stronger understanding of the topics covered, their interconnections, and when different types of plasma models are applicable. Furthermore, mathematical derivations are rigorous, yet concise, so physical understanding is not lost in lengthy mathematical treatments. Worked examples illustrate practical applications of theory and students can test their new knowledge with 90 end-of-chapter problems"--
|c Provided by publisher.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|6 880-01
|a CHAPTER 1 Introduction; CHAPTER 2 Single-particle motion; CHAPTER 3 Kinetic theory of plasmas; CHAPTER 4 Moments of the Boltzmann equation; CHAPTER 5 Multiple-fluid theory of plasmas; CHAPTER 6 Single-fluid theory of plasmas: magnetohydrodynamics; CHAPTER 7 Collisions and plasma conductivity; CHAPTER 8 Plasma diffusion; CHAPTER 9 Introduction to waves in plasmas; CHAPTER 10 Waves in cold magnetized plasmas; CHAPTER 11 Effects of collisions, ions, and finite temperature; CHAPTER 12 Waves in hot plasmas.
|
546 |
|
|
|a English.
|
650 |
|
0 |
|a Plasma (Ionized gases)
|v Textbooks.
|
650 |
1 |
2 |
|a Plasma Gases.
|
650 |
2 |
2 |
|a Physics.
|
650 |
|
4 |
|a Plasma (Ionized gases)
|
650 |
|
4 |
|a Textbooks
|
650 |
|
4 |
|a Science
|
650 |
|
7 |
|a SCIENCE
|x Electromagnetism.
|2 bisacsh
|
650 |
|
7 |
|a Plasma (Ionized gases)
|2 fast
|0 (OCoLC)fst01066262
|
655 |
|
0 |
|a Electronic books.
|
655 |
|
4 |
|a Electronic books.
|
655 |
|
4 |
|a Electronic books
|
655 |
|
7 |
|a Textbooks.
|2 fast
|0 (OCoLC)fst01423863
|
700 |
1 |
|
|a Gołkowski, Marek.
|0 http://id.loc.gov/authorities/names/n2010058860
|
776 |
0 |
8 |
|i Print version:
|a Inan, Umran S.
|t Principles of plasma physics for engineers and scientists.
|d Cambridge ; New York : Cambridge University Press, 2011
|z 9780521193726
|w (DLC) 2010038466
|w (OCoLC)651077848
|
880 |
0 |
0 |
|6 505-01/(S
|g Machine generated contents note:
|g 1.
|t Introduction --
|g 1.1.
|t Speed, energy, and temperature --
|g 1.2.
|t Quasi-neutrality and plasma oscillations --
|g 1.3.
|t Debye shielding --
|g Example 1-1
|t Debye length and plasma frequency --
|g 1.4.
|t Problems --
|t References --
|g 2.
|t Single-particle motion --
|g 2.1.
|t Motion in a uniform B field: gyration --
|g 2.2.
|t E x B drift --
|g Example 2-1
|t Hall thruster --
|g 2.3.
|t Particle motion in non-uniform B fields --
|g 2.3.1.
|t Gradient drift --
|g 2.3.2.
|t Curvature drift --
|g 2.3.3.
|t Other gradients of B --
|g 2.4.
|t Adiabatic invariance of the magnetic moment --
|g Example 2-2
|t Plasma confinement using magnetic mirrors --
|g 2.5.
|t Particle motion in time-varying electric fields --
|g 2.5.1.
|t Polarization drift: slowly varying E field --
|g 2.5.2.
|t Particle motion in static B and arbitrary E fields --
|g Example 2-3
|t Cyclotron resonance --
|g 2.6.
|t Summary --
|g 2.7.
|t Problems --
|t References --
|g 3.
|t Kinetic theory of plasmas --
|g 3.1.
|t Introduction --
|g 3.2.
|t Comparison of properties of gases and plasmas --
|g 3.3.
|t Velocity distribution function --
|g Example 3-1
|t Phase-space distribution function --
|g 3.4.
|t Boltzmann equation --
|g 3.5.
|t Maxwell-Boltzmann distribution --
|g 3.5.1.
|t Number density --
|g 3.5.2.
|t Temperature --
|g 3.5.3.
|t Velocity in one dimension and speed --
|g 3.5.4.
|t Degree of ionization: the Saha equation --
|g Example 3-2
|t Ionization fraction of air --
|g 3.5.5.
|t Shifted Maxwellian distribution --
|g 3.6.
|t Vlasov equation --
|g 3.6.1.
|t convective derivative in physical space and in phase space --
|g 3.7.
|t Equivalence of the particle equations of motion and the Vlasov equation --
|g 3.8.
|t Summary --
|g 3.9.
|t Problems --
|t References --
|g 4.
|t Moments of the Boltzmann equation --
|g 4.1.
|t Introduction --
|g 4.2.
|t zeroth-order moment: continuity equation --
|g 4.2.1.
|t Closer consideration of collisions and conservation of particles --
|g Example 4-1
|t Electron density in the ionosphere: day versus night --
|g 4.3.
|t first-order moment: momentum transport equation --
|g 4.3.1.
|t pressure and collision terms --
|g Example 4-2
|t Fluorescent lamp --
|g 4.4.
|t second-order moment: energy transport equation --
|g 4.5.
|t Systems of macroscopic equations: cold- and warm-plasma models --
|g 4.5.1.
|t cold-plasma model --
|g 4.5.2.
|t warm-plasma model --
|g 4.6.
|t Summary --
|g 4.7.
|t Problems --
|t Reference --
|g 5.
|t Multiple-fluid theory of plasmas --
|g 5.1.
|t Introduction --
|g 5.2.
|t Complete set of two-fluid equations --
|g Example 5-1
|t Plasma discharge for IC manufacture --
|g 5.3.
|t Fluid drifts perpendicular to B --
|g 5.4.
|t Parallel pressure balance --
|g 5.5.
|t Summary --
|g 5.6.
|t Problems --
|t Reference --
|g 6.
|t Single-fluid theory of plasmas: magnetohydrodynamics --
|g 6.1.
|t Introduction --
|g 6.2.
|t Single-fluid equations for a fully ionized plasma --
|g 6.2.1.
|t Equations of mass and charge conservation --
|g 6.2.2.
|t Equation of motion --
|g 6.2.3.
|t Generalized Ohm's law --
|g 6.3.
|t Magnetohydrodynamics plasma model --
|g 6.4.
|t Simplified MHD equations --
|g 6.4.1.
|t Frozen-in magnetic flux lines --
|g Example 6-1
|t solar wind --
|g 6.4.2.
|t Diffusion of magnetic field lines --
|g 6.5.
|t Force balance in MHD --
|g 6.5.1.
|t Magnetic forces --
|g 6.6.
|t Magnetohydrostatics --
|g 6.6.1.
|t θ-pinch --
|g 6.6.2.
|t cylindrical pinch --
|g Example 6-2
|t Tokamak --
|g 6.7.
|t Collisionless plasmas with strong magnetic field --
|g 6.7.1.
|t Mirror equilibrium --
|g 6.8.
|t Summary --
|g 6.9.
|t Problems --
|t References --
|g 7.
|t Collisions and plasma conductivity --
|g 7.1.
|t Introduction --
|g 7.2.
|t Collisions --
|g 7.2.1.
|t Weakly ionized plasmas --
|g 7.2.2.
|t Fully ionized plasmas: Coulomb collisions --
|g 7.2.3.
|t Specific resistivity --
|g 7.3.
|t Plasma conductivity --
|g 7.3.1.
|t DC conductivity --
|g Example 7-1
|t Ionospheric heating --
|g 7.3.2.
|t AC conductivity --
|g 7.3.3.
|t Conductivity with ion motion --
|g 7.4.
|t Summary --
|g 7.5.
|t Problems --
|t Reference --
|g 8.
|t Plasma diffusion --
|g 8.1.
|t Introduction --
|g 8.2.
|t Diffusion in weakly ionized plasmas --
|g 8.2.1.
|t Ambipolar diffusion in an unmagnetized plasma --
|g 8.2.2.
|t Free diffusion across a magnetic field --
|g 8.3.
|t Diffusion in fully ionized plasmas --
|g 8.4.
|t Summary --
|g 8.5.
|t Problems --
|g 9.
|t Introduction to waves in plasmas --
|g 9.1.
|t Introduction --
|g 9.2.
|t General properties of small-amplitude waves --
|g 9.3.
|t Waves in non-magnetized plasmas --
|g 9.3.1.
|t Plasma oscillations --
|g 9.3.2.
|t Transverse electromagnetic waves --
|g 9.3.3.
|t Electrostatic electron and ion waves --
|g 9.4.
|t Problems --
|g 10.
|t Waves in cold magnetized plasmas --
|g 10.1.
|t Introduction --
|g 10.2.
|t dispersion relation --
|g 10.3.
|t Waves in magnetized plasmas --
|g 10.3.1.
|t Principal modes --
|g 10.3.2.
|t Oblique propagation at an arbitrary angle θ --
|g 10.4.
|t Summary --
|g 10.5.
|t Problems --
|t References --
|g 11.
|t Effects of collisions, ions, and finite temperature on waves in magnetized plasmas --
|g 11.1.
|t Introduction --
|g 11.2.
|t Effects of collisions --
|g 11.3.
|t Effects of positive ions --
|g 11.3.1.
|t Parallel propagation (θ = 0) --
|g 11.3.2.
|t Perpendicular propagation (θ = π/2) --
|g 11.3.3.
|t Oblique propagation (arbitrary θ) --
|g 11.3.4.
|t Hydromagnetic (MHD) waves --
|g 11.4.
|t Effects of temperature --
|g 11.4.1.
|t Parallel propagation (θ = 0) --
|g 11.4.2.
|t Perpendicular propagation (θ = π/2) --
|g 11.5.
|t Summary --
|g 11.6.
|t Problems --
|g 12.
|t Waves in hot plasmas --
|g 12.1.
|t Introduction --
|g 12.2.
|t Waves in a hot isotropic plasma --
|g 12.2.1.
|t Longitudinal waves (k [œ] E) --
|g 12.2.2.
|t Transverse waves --
|g 12.2.3.
|t two-stream instability --
|g 12.3.
|t Waves in a hot magnetized plasma --
|g 12.4.
|t More on collisions in plasmas --
|g 12.4.1.
|t Krook collision model --
|g 12.5.
|t Summary --
|g 12.6.
|t Problems --
|t References --
|g 13.
|t plasma sheath and the Langmuir probe --
|g 13.1.
|t Introduction --
|g 13.2.
|t Particle flux --
|g 13.3.
|t Sheath characteristics --
|g 13.4.
|t Langmuir probe --
|g 13.5.
|t Problems --
|g Appendix
|t A Derivation of the second moment of the Boltzmann equation --
|g Appendix B
|t Useful vector relations --
|g B.1.
|t Definitions and identities --
|g B.2.
|t Relations in Cartesian coordinates --
|g B.3.
|t Relations in cylindrical coordinates --
|g B.4.
|t Relations in spherical coordinates.
|
903 |
|
|
|a HeVa
|
929 |
|
|
|a oclccm
|
999 |
f |
f |
|i f0d97060-bef6-5352-ae5a-0e442b44b215
|s 3dec74d6-fb7c-5580-8b26-841d20263d13
|
928 |
|
|
|t Library of Congress classification
|a QC718 .I435 2011eb
|l Online
|c UC-FullText
|u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=e000xna&AN=337713
|z eBooks on EBSCOhost
|g ebooks
|i 12300083
|