Canonical Ramsey theory on Polish spaces /

Saved in:
Bibliographic Details
Author / Creator:Kanoveĭ, V. G. (Vladimir Grigorʹevich)
Imprint:Cambridge : Cambridge University Press, 2013.
Description:1 online resource (viii, 269 pages)
Language:English
Series:Cambridge tracts in mathematics ; 202
Cambridge tracts in mathematics ; 202.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11831896
Hidden Bibliographic Details
Other authors / contributors:Sabok, Marcin.
Zapletal, Jindřich, 1969-
ISBN:9781107416604
1107416604
9781139208666
1139208667
9781306071963
1306071968
9781107419247
1107419247
9781107420472
1107420474
9781107026858
1107026857
Notes:Includes bibliographical references (pages 264-267) and index.
Print version record.
Summary:This book lays the foundations for an exciting new area of research in descriptive set theory. It develops a robust connection between two active topics: forcing and analytic equivalence relations. This in turn allows the authors to develop a generalization of classical Ramsey theory. Given an analytic equivalence relation on a Polish space, can one find a large subset of the space on which it has a simple form? The book provides many positive and negative general answers to this question. The proofs feature proper forcing and Gandy-Harrington forcing, as well as partition arguments. The results include strong canonization theorems for many classes of equivalence relations and sigma-ideals, as well as ergodicity results in cases where canonization theorems are impossible to achieve. Ideal for graduate students and researchers in set theory, the book provides a useful springboard for further research.
Other form:Print version: Kanoveĭ, V.G. (Vladimir Grigorʹevich). Canonical Ramsey theory on Polish spaces 9781107026858

MARC

LEADER 00000cam a2200000Ki 4500
001 11831896
006 m o d
007 cr cnu---unuuu
008 131029s2013 enk ob 001 0 eng d
005 20240509203441.7
019 |a 862114240  |a 863821791 
020 |a 9781107416604  |q (electronic bk.) 
020 |a 1107416604  |q (electronic bk.) 
020 |a 9781139208666  |q (electronic bk.) 
020 |a 1139208667  |q (electronic bk.) 
020 |a 9781306071963  |q (MyiLibrary) 
020 |a 1306071968  |q (MyiLibrary) 
020 |a 9781107419247 
020 |a 1107419247 
020 |a 9781107420472  |q (e-book) 
020 |a 1107420474  |q (e-book) 
020 |z 9781107026858 
020 |z 1107026857 
035 |a (OCoLC)861693020  |z (OCoLC)862114240  |z (OCoLC)863821791 
035 9 |a (OCLCCM-CC)861693020 
037 |a 538447  |b MIL 
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d IDEBK  |d YDXCP  |d CAMBR  |d OCLCF  |d N$T  |d CDX  |d EBLCP  |d NMC  |d COO  |d DEBSZ  |d OCLCQ  |d BUF  |d UAB  |d OCLCQ  |d AU@  |d UKAHL  |d OCLCQ  |d S8J  |d OCLCQ 
049 |a MAIN 
050 4 |a QA248  |b .K356 2013eb 
072 7 |a MAT  |x 000000  |2 bisacsh 
100 1 |a Kanoveĭ, V. G.  |q (Vladimir Grigorʹevich)  |0 http://id.loc.gov/authorities/names/n85358241 
245 1 0 |a Canonical Ramsey theory on Polish spaces /  |c Vladimir Kanovei, Marcin Sabok, Jindřich Zapletal. 
264 1 |a Cambridge :  |b Cambridge University Press,  |c 2013. 
300 |a 1 online resource (viii, 269 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Cambridge tracts in mathematics ;  |v 202 
504 |a Includes bibliographical references (pages 264-267) and index. 
588 0 |a Print version record. 
505 0 |a Introduction -- Background facts -- Analytic equivalence relations and models of set theory -- Classes of equivalence relations -- Games and the Silver property -- The game ideals -- Benchmark equivalence relations -- Ramsey-type ideals -- Product-type ideals -- The countable support iteration ideals. 
520 |a This book lays the foundations for an exciting new area of research in descriptive set theory. It develops a robust connection between two active topics: forcing and analytic equivalence relations. This in turn allows the authors to develop a generalization of classical Ramsey theory. Given an analytic equivalence relation on a Polish space, can one find a large subset of the space on which it has a simple form? The book provides many positive and negative general answers to this question. The proofs feature proper forcing and Gandy-Harrington forcing, as well as partition arguments. The results include strong canonization theorems for many classes of equivalence relations and sigma-ideals, as well as ergodicity results in cases where canonization theorems are impossible to achieve. Ideal for graduate students and researchers in set theory, the book provides a useful springboard for further research. 
650 0 |a Set theory.  |0 http://id.loc.gov/authorities/subjects/sh85120387 
650 0 |a Ramsey theory.  |0 http://id.loc.gov/authorities/subjects/sh85111302 
650 0 |a Polish spaces (Mathematics)  |0 http://id.loc.gov/authorities/subjects/sh91000874 
650 7 |a MATHEMATICS  |x General.  |2 bisacsh 
650 7 |a Polish spaces (Mathematics)  |2 fast  |0 (OCoLC)fst01069157 
650 7 |a Ramsey theory.  |2 fast  |0 (OCoLC)fst01089712 
650 7 |a Set theory.  |2 fast  |0 (OCoLC)fst01113587 
655 0 |a Electronic books. 
655 4 |a Electronic books. 
700 1 |a Sabok, Marcin. 
700 1 |a Zapletal, Jindřich,  |d 1969-  |0 http://id.loc.gov/authorities/names/n2003013917 
776 0 8 |i Print version:  |a Kanoveĭ, V.G. (Vladimir Grigorʹevich).  |t Canonical Ramsey theory on Polish spaces  |z 9781107026858  |w (OCoLC)847601579 
830 0 |a Cambridge tracts in mathematics ;  |v 202.  |0 http://id.loc.gov/authorities/names/n42005726 
903 |a HeVa 
929 |a oclccm 
999 f f |i 6a07dc5d-bdc0-51cb-82cf-316c95b23b05  |s 43bca138-6f8b-5416-ae35-c2b0e84cc192 
928 |t Library of Congress classification  |a QA248 .K356 2013eb  |l Online  |c UC-FullText  |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=e000xna&AN=622090  |z eBooks on EBSCOhost  |g ebooks  |i 12398129